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Abstract—We present a scalable parallel /O system for a
logical-inferencing application built atop a deductive database.
Deductive databases can make logical deductions (i.e. conclude
additional facts), based on a set of program rules, derived
from facts already in the database. Datalog is a language or
family of languages commonly used to specify rules and queries
for a deductive database. Applications built using Datalog can
range from graph mining (such as computing transitive closure,
k-cliques, or FSM) to program analysis (eentrel—and—data-
flew—analysis). In our previous papers, we presented the first
implementation of a data-parallel Datalog built using MPI. In
this paper, we present a parallel I/O system used to checkpoint
and restart ef-applications built on top of our Datalog system.
State of the art Datalog implementations, such as Soufflé, only
support serial I/O, mainly because the implementation itself does
not support many-node parallel execution.

Computing the transitive closure of a graph is one of the
simplest logical-inferencing application built using Datalog; we
use it as a micro-benchmark to demonstrate the efficacy of our
parallel I/O system. Internally, we use a nested B-tree data-
structure to facilitate fast and efficient in-memory access to
relational data. Our I/O system therefore involves two steps,
converting the application data-layout (a nested B-tree) to a
stream of bytes followed by the actual parallel I/O. We explore
two popular I/0 techniques POSIX I/0O and MPI collective 1/O.
For extracting performance out of MPI Collective I/O we use
adaptive striping, and for POSIX I/O we use file-per-process
I/0. We demonstrate the scalability of our system at up to 4,096
processes on the Theta supercomputer at the Argonne National
Laboratory.

I. INTRODUCTION

High-performance computing (HPC) applications are de-
signed to enable massively-scalable solutions to challenging
problems, but come at the expense of more complicated
programming techniques to perform common tasks including
file input and output (I/O). There has been a wealth of work
on parallel I/O techniques [14], [18], [21], [25], [30], espe-
cially for traditional scientific applications [8], [26]. In our
papers [12], [19], [20], we presented the first implementation
of distributed relational algebra that forms the basis of a data-
parallel Datalog. Datalog is a language used to specify facts,
rules and queries in deductive databases. Deductive databases
combines logic programming with relational databases to
enable logical deductions (i.e. conclude additional facts) based
on existing rules combined with input and inferred facts.
Our work has facilitated a new class of HPC applications:
declarative logical inferencing at scale. In this paper, we
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present a preliminary exploration of scalable I/O for HPC
applications built on top of our data parallel Datalog, ones that
leverage parallel relational-algebra [19]. These applications
readily enable massively-parallel graph mining (e.g., transitive
closure and k-clique) and program analysis (e.g., context-
sensitive points-to analysis).

Relational algebra (RA) forms the underlying primitives
for state-of-the-art deductive reasoning systems, including the
Soufflé Datalog engine [27]. These systems commonly utilize
some task-level parallelism (e.g., using PThreads or OpenMP)
and run on a single node, and utilize standard serial I/O
through the usual POSIX APIs. Systems built on parallel RA
instead run on clusters, and thus require a different approach
to enable parallel I/O across an entire cluster rather than a
single node.

Datalog programs such as transitive-closure computation
involve running relational algebra operations (e.g., join, pro-
jection, union) on relations until a fixed point is reached. This
may be related to typical HPC applications that simulate scien-
tific phenomenon, often involving data changing across time.
Traditional HPC applications typically apply scientific models
on data stored across grids/meshes (structured, unstructured or
adaptive). Our application works on relations—tables of data.
Relations are mainly unstructured data, however, our applica-
tion works on discrete integral entities that requires tasks like
deduplication, and iterating over a range of values, therefore
necessitating us to use complex data structures that supports
these tasks efficiently. Our parallel RA implementation is built
on top of a nested B-tree data structure.

Traditional HPC applications deploy parallel I/O in the
form of checkpointing as a popular fault-tolerance technique,
where the entire state of the simulation is saved on the disk,
in case there is a need to restart the simulation from a
particular timestamp. With our parallel I/O system, we enable
our Datalog applications to checkpoint data by writing our all
relations at regular intervals. Since we deal with unstructured
data which are stored in memory using a nested B-tree, our
I/O system involves two primary steps: first, we convert the
nested trees that form a relation’s index (storing the table
data, except organized for a particular access pattern) into a
stream of bytes in memory. Next, is parallel I/O. The number
of relations generated will depend on the specific Datalog
program. For example, transitive closure generates only two
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relations, the input graph and the output graph; on the other
hand, even a simple k-CFA Datalog program generates around
20 relations. From an I/O perspective, there are several ways
to pack these relations. In general, one can have files storing
a tunable number of relations. From a technique perspective,
one can use MPI-collective I/O that writes data to a shared file
or write data in a file-per-process mode where every process
writes data for every relation to a separate file. For initial
exploration, we use transitive closure as a micro-benchmark
and present and compare two popular I/O techniques: file-
per-process 1/O using POSIX I/O and shared file I/O using
MPI collective I/0. We demonstrate the efficacy of our parallel
I/0 system by enabling checkpointing and restart capabilities
for our RA based applications. In this paper, we present
two novel contributions: (1) we describe the first parallel I/O
system for a distributed deductive database, and (2) we present
a preliminary exploration and comparison of two popular
approaches to parallel I/O in this context.

II. BACKGROUND

First, we will review the major components of our data-
parallel deductive database, using path-finding in graphs as
an illustrative example. In query languages for deductive
databases, rules can be provided to define additional relations
(tables) defined in terms of others.

B(x,y) := G(x,v¥), G(y,x), x<y.

The above rule infers a relation B which gets a single tuple
(z,y) for each bi-direction edge in an input table G, that
encodes a graph. Because G appears twice in the body of
the rule, we must effectively join the table with itself; then,
a final constraint, x < y, filters this output so that edges are
added to B only once, in a canonical order.

A. Deductive Databases

The databases rules can also be recursive, as in a Datalog
program for computing the transitive closure, 7', of a graph

= G(x,vY).

- T(x,y), G(y,2) .

The first rule represents a base case that says every x-to-
y edge in G implies an immediate x-to-y path in 7". The
second rule is recursive and must be iterated repeatedly until
stabilizing at a consistent value for 7. The first rule can be
implemented using a single relational union of G and 7" (unless
we can assume 7" is empty), or using insertion of every element
in G into T'. The second rule can be implemented by iteration
of a kernel function, composed of several relational operations,
iterated to a least-fixed-point where 7" is minimally consistent
with the second rule. One iteration of this function would join
T on its second column with G on its first column, yielding
all triples (x,y,z) where (z,y) can be drawn from T and
(y, z) can be drawn from G. Projection to the set of unique
(z, z) tuples, removing the middle column (as a graph, this
is removing the intermediate vertex in the discovered path),

and unioning this set of tuples with those in 7" completes one
iteration of the second rule.

Consider a relation G, shown below as a table. Joining G
on its second column with GG on its first column yields a new
relation, with three columns, encoding all paths of length 2
through the graph G, where each path is made of three nodes
in order.

G G joined with G
0 1 0 1 2
A B A B D
A C A C D
B D B D E
C D C D E
D E pos1(pos1(G) <1 G)

Note that to compute a single join of G on its second
column with G on its first column, we first reverse G’s
columns, computing po/;(G) to reorder columns, so we may
then compute a join on one column: py,; (G) 1 G. To present
the resulting paths of length two in order again, we may use
renaming to swap the join column back to the middle position,
as shown above. Our implementation provides more general
operations that make this administrative renaming unnecessary.
In the case of iterating the two rules above to compute a
transitive closure of GG, we use a persistent index for G, keyed
on its first column, and a persistent index on 7', keyed on its
second column.

We can encapsulate each iteration of TC computation as
a function Extendg which takes a graph 7', and returns 7”s
edges extended with G’s edges, unioned with G.

Extendc(T) £ G ULy 2(po1(T) <1 G)

Consider a new graph G, at the top of Figure 1. The graph
T, below, is returned by Extendg(L), the graph below it is
returned by Extend? (L), the graph below that is returned by
Extendg®(L), etc. As Extend is repeatedly applied from an
empty input, each result encodes ever longer paths through G,
as shown. In this case for example, the graph ExtendG4(J_)
encodes the transitive closure of G—all paths in G reified as
edges. One final iteration, computing Extendg° (L), is required
to check that the process successfully reached a fixed point for
Extendg.

Computing transitive closure is a simple example of logical
inference. From paths of length zero (an empty graph) and
the existence of edges in graph GG, we deduce the existence of
paths of length 0...1. From paths of length 0...n and the
original edges in graph (G, we deduce the existence of paths
of length 0...n + 1. This kind of logical inference forms
the semantics of Datalog, a bottom-up logic-programming
language supporting a restricted logic corresponding roughly
to first-order HornSAT—the SAT problem for conjunctions of
Horn clauses [4].

A Datalog program is a set of such rules,

P(SL'(),...,(Ek) < Q(y(),...

and its input is a database of initial facts called the extensional
database (EDB). Running the datalog program makes explicit

,yj)/\.../\S(Z(),...,Zm),
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Fig. 1. Transitive closure of a string graph distributed over two processes.

the intensional database (IDB) which extends facts in the EDB
with all facts transitively derivable via the program’s rules.
Each Datalog rule may be encoded as a monotonic function
F' (between databases) where a fixed point for the function
is guaranteed to be a database that satisfies the particular
rule. Once a set of functions Fy ... F,,, one for each rule,
are constructed, Datalog evaluation operates by iterating the
IDB to a mutual fixed point for Fy ... F,,. Datalog inference
must be monotonic, so that evaluation is strictly increasing,
however a Datalog program may also be decomposed into a
stratified directed acyclic graph (DAG) of strongly connected
components (SCCs) encoding sets of mutually recursive rules.
In practical Datalog implementations, such as Soufflé [15],
[27], the stratification of Datalog rules into SCCs also permits
the weakening of monotonicity constraints and inclusion of
negation and aggregation operations across SCCs. Crucially,
once a Datalog program is compiled to SCCs, each SCC may
be treated as an independent Datalog program with its own
EDB and IDB—a property we can exploit when using 10 for
checkpointing.

B. Implementing Parallel Deductive Databases

Beyond the basic process described, typical Datalog imple-
mentations use highly efficient and compressed data-structures
[16], [17], automated selection of efficient indices [29], and
incrementalization or semi-naive evaluation [4]. Our imple-
mentation distributes relations across a set of MPI processes,
using nested B-trees locally to store indices.

The double-hashing approach, with local hash-based joins
and hash-based distribution of relations, is the most commonly
used method to distribute join operations over many nodes
in a networked cluster computer. This algorithm involves
partitioning relations by their join-column values so that they
can be efficiently distributed to participating processes [5], [7].
The main insight behind this approach is that for each tuple
in the outer relation, all relevant tuples in the inner relation
must be hashed to the same MPI process or node, permitting
joins to be performed locally on each process.

Our recent approach proposes adapting the representation of
imbalanced relations by using a two-layered distributed hash-
table to partition tuples over a fixed set of buckets. Within
each bucket, tuples are assigned to one element of a dynamic
set of subbuckets which may vary across buckets [19] and
across time. Each tuple is assigned to a bucket based on a
hash of its join-column values, but within each bucket, tuples
are hashed on non-join-column values, assigning them to a
local subbucket, then mapped to an MPI process. This permits
buckets that have more tuples to be split across multiple
processes, but requires some additional communication among
subbuckets for any particular bucket.

Our implementation heavily relies on all-to-all communi-
cation as tuples produced by a local join may belong to
another rank and must be moved before a subsequent iteration.
Consider Figure 1, which show initial graphs G and 7' and
each step of TC computation in a database distributed over
two processes. 7T is initially the same as graph G, but is
indexed on its second column, so arrows are shown reversed.
Each key value (vertex) is hashed to assign it to a bucket,
and thus a process (shown as arrows colored blue or orange).
Note how in the first iteration, an edge 7(0, 1) keyed on value
1 and assigned to process 0 is composed with edge G(1,0),
keyed on value 1 and also on process 0, producing a new edge
T(0,2) that is keyed on value 2 and assigned to process 1. This
requires our all-to-all communication phase between iterations
which shuffles newly learned facts to their host process.

The Datalog program for TC shown above, compiles down
to a program of two indices and two SCCs, one SCC for fixed
initialization, and another SCC that performs an unbounded
number of iterations to reach a fixed point for 7.

The end-to-end pipeline showing each major phase of a par-
allel join can be seen in Figure 2. Intra-bucket communication
first replicates tuples whose keys have matching hash values
on a single node, only for the left-hand relation so that joins
can be done efficiently in parallel. After the local join phase,
an all-to-all phase propagates output tuples to their destination
relations where they are inserted locally. At this point the
iteration is over and can progress, with an optional I/O phase
to save this point in evaluation.

III. PARALLEL I/O IMPLEMENTATIONS

Besides writing the relations once a fixed point is reached,
one of the main goals of our parallel I/O system is to enable
checkpointing and restarts. Checkpointing is a popular fault-
tolerant technique where the current state is written to facilitate
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Fig. 2. Shows the major phases of a balanced join in the context of a TC computation [12].

a seamless restart. As shown in the previous section, our
application is broken into a series of stratified tasks that
operate on sets of relations. For example, TC consists of two
stratified tasks and two relations (G and T). Checkpoints save
the entire state of each relation, along with metadata about
which tasks have completed. Each relation is marked either
static or dynamic, depending on whether that relation is written
to within a given task. Each relation also has several versions:
static relations (not written to within a given task) store only
a total version, while dynamic relations (which update as
the task progresses) include both a total and delta version.
Delta contains the new tuples produced at a given iteration,
while fotal contains all existing tuples for a given relation. For
example, the G relation in our TC program is static and thus
only the total version is stored, whereas T is dynamic so both
a delta and total version are stored.

With respect to parallel I/O, our RA-based system differs
from traditional HPC applications in two ways: data repre-
sentation and workload distribution. As opposed to typical
grid-based HPC applications, our system stores tuple data for
each relation in a nested B-tree data structure. To materialize
a writable byte stream we must iterate over this nested B-
tree. To handle workload distribution we use balanced hash-
trees [20], which partition a relation across processes into
similarly-sized chunks. The load balancing is approximate
and does not guarantee uniform workload distribution across
processes. Before writing data, processes perform an explicit
metadata exchange phase to get a coherent view of the file.

There exists several high level parallel I/O systems such
as PnetCDF [24], Parallel HDF5 [30], PIDX [23] and
ADIOS [13] that are commonly used by scientific applications.
Many of these I/O libraries such as PnetCDF and Parallel

HDFS5 are built on top of MPI I/O and default to one shared
file. Despite increased convenience in dealing with one single
file, existing work such as [11], [22] has demonstrated that it
is often necessary to organize writes into a hierarchy of files
to achieve optimal performance. We have therefore enabled
our system with both MPI collective I/O that can write data
to a shared file and POSIX I/O that can enable file-per-process
I/0. We expose the parameter cp_iteration and cp_mode, that
controls the frequency and mode (POSIX I/O or MPI I/O) of
checkpoint dumps. Figure 2 shows how our I/O system fits in
our parallel RA pipeline.

Portable Operating System Interface (POSIX) I/O is used
to enable each process to write each relation separately. We
perform file-per-process writes for both delta and full of every
dynamic relation. Therefore, n processes and r relations may
generate up to 2 x n X r (based on how many relations include
delta versions) files. No metadata exchange is required for
writing these files, as processes write data to their respective
files in parallel. We also perform basic filtering to prevent
empty files being created by processes that have no tuples for
a given relation; this is especially useful given that delta is
often sparsely distributed across processes.

MPI Collective I/O [24] is used for writing a shared
file. It enables I/O optimizations that analyzes and merges
I/O requests of processes. Merged I/O requests combine non-
contiguous requests of individual processes into a single larger
contiguous request. Before invoking collective I/O, we perform
a metadata exchange phase wherein every process shares the
size of each of its relations with each other process. Each
process then uses this information to compute their appropriate
starting offset into the file. We also perform adaptive striping,
which selectively stripes files greater than 1 GiB across 48



OST with a striping unit of 8 MiB. This configuration is
recommended by the ALCF guidelines for I/O performance
on Theta [9]. Adaptive striping helps us extract better perfor-
mance from the shared filesystem.

In our current implementation, with both modes, we do
not write data from multiple relations to a common file. As
can be seen in the evaluation section, this method is scalable
for transitive closure. However, we believe that with more
complex datalog programs, which will generate hundreds of
relations, we will have to develop a system where we can write
a tunable number of relation to a file.

A. Metadata

Metadata files store information which is necessary for
restarting from a checkpoint. We have two metadata files: scc-
metadata and offset-metadata. scc-metadata file stores a list
of terminated tasks so that they may be skipped upon restart.
The offset-metadata is needed only for shared files (one for
every relation), and contains the local process size along with
the global offset for every process. MPI_Allgather () is
used to populate offset metadata, and is written by process with
rank 0. This metadata is used during restarts by each process to
load tuples specific to that process, avoiding a more expensive
phase to shuffle tuples to the appropriate relation after reading.

IV. EVALUATION

We use transitive closure (TC) computation as a mi-
crobenchmark to test the scalability of our parallel I/O sys-
tem. We demonstrate the efficacy of parallel writes through
checkpoint dumps and parallel reads through restarts. We
corroborated the timings of our experimental results using
Darshan [6] logs.

A. Dataset and HPC platforms

We performed our experiments using graphs from the
SuiteSparse Matrix Collection [10]. For our experiments, we
used the graph [1] containing 412,148 edges. There were
5,866 iterations necessary for our TC implementation to reach
a fixed-point, generating a transitive closure of 1,676,697,757
edges. Space complexity for TC is quadratic—an input graph
with n edges may generate a fully-connected transitive closure
consisting of n? edges.

All experiments were performed on the Theta Supercom-
puter [2] at the ALCF. Theta is a Cray machine with peak per-
formance of 11.69 petaflops, 281,088 compute cores, 843.264
TiB of DDR4 RAM and 10 PiB of online disk storage.
Experiments used Theta’s Lustre filesystem [3].

TABLE I
THE SIZE OF 6 CHECKPOINTS

Checkpoint ID 0 1 2 3 4 | final
Total size (GiB) | 13 | 26 | 39 | 52 | 64 75

B. Checkpointing: parallel writes

We tested the efficacy of parallel writes via a set of
strong scaling experiments whose results are shown in Fig-
ure 3. Checkpoints were dumped every 1,000 iterations. Given
this checkpoint frequency and total of 5,866 iterations, the
transitive closure (TC) computation generated 5 intermediate
checkpoint dumps and one final output dump. The total sizes
of each of these six checkpoints is shown in Table I. Our TC
computation uses a balanced hash-tree join algorithm [20] to
ensure workload is uniformly-distributed across processes. We
varied the process count from 256 to 4,096, with the smallest
run (256 processes) corresponding to 52 MiB (13 GiB/256)
for the first checkpoint and 300 MiB (13 GiB/256) for the
final checkpoint. We ran our experiments used both POSIX
I/O and MPI collective I/O. We also executed IOR tests at
each process count. IOR is a general-purpose parallel I/O
benchmark [28] which we configured in this case to generate
one file per process with the total workload similar to the final
checkpoint dump (75 GiB). IOR was set to perform POSIX I/O
with fsync enabled. The IOR performance gives us a measure
of the maximum performance achievable for the filesystem.

We observed three different trends: (1) for all cases POSIX
I/O demonstrates much better scalability than MPI collec-
tive I/O. For example, at 256 processes POSIX I/O writes
data at 3.797 GiB/second (for final checkpoint), compared
to 1.724 GiB/second with MPI collective I/O. Shared file
I/O demonstrates sub-par performance as it involves a data
aggregation phase that adds extra overhead. (2) For process
counts, 256, 512 and 1,024, despite having different ag-
gregate workloads, bandwidth across all checkpoint dumps
remains roughly the same, whereas for process counts 2,048
and 4,096, we observe decreasing performance with smaller
workload (initial checkpoints). For example, with POSIX I/O
at process count 512, the first and last checkpoint have a
bandwidth of 8.334 and 7.577 GiB/sec whereas at process
count 4,096 the two checkpoints have a bandwidth of 26.925
and 52.783 GiB/seconds. These observations may be attributed
to an overall reduction in per-process workload with increasing
process-counts, and with less data to write, total time is
dominated by initialization costs. (3) We observe that we
under-perform when compared to IOR file-per process 1/O, this
trend can be better understood by performing a component-
wise breakdown of all I/O components (Figure 4).

In Figure 4 we graph time taken by the three components
of our I/O scheme: metadata I/O, populating the file I/O
buffer and actual file I/O operation. The results correspond
to aggregated timing across all checkpoint dumps, therefore
the blue chunk of the bar corresponds to the total time taken
in populating the file I/O buffer across all 6 checkpoints.
Populating file I/O buffer is very unique to our application, as
for a typical grid-based scientific application data is stored in-
memory in arrays that can be directly mapped to files. Unlike
traditional HPC applications, our relational data exists in a
nested B-tree data structure, which needs to be iterated over
to obtain a stream of writable bytes. Looking at the graph, we



8000

MPI Collective I/O
M 13GB 26GB 39GB
M 52GB M 64GB M 75GB
6000
—_
@
a
b
<
% 4000
2
kS
<
M
2000
0
256 512 1024 2048 4096
Total number of processes
60000
POSIX /O
M 13GB 26GB 39GB
M 52GB M 64GB M 75GB
IOR File per process (75GiB)
45000
—
2
=)
=
<
< 30000
=t
e
<
m
15000
0

256 512 1024 2048 4096

Total number of processes

Fig. 3. Strong scaling evaluation of MPI Collective I/O (top) and Posix I/0
(bottom) for writing all checkpoints of table I.

can see that for all process counts, a major portion of time
is spent during populating the file-I/O buffer. For example, at
4,096 processes, with file per-process 1/0, file I/O buffer takes
3.396 seconds which is 59.414 percent of the total I/O time.
Our file I/O time is comparable to the actual IOR timings.
Another related trend to note is that with increasing process
count, populating file I/O buffer time reduces linearly, taking
a smaller fraction of the total I/O time.

C. Restarting: parallel reads

We evaluate the efficacy of both our I/O schemes for parallel
reads through restart experiments. Typically a restart is done
using the same number of processes as was used to write
the data. For shared files this can be efficiently facilitated
by the offset-metadata file, using which every process can
concurrently read the appropriate tuple directly from the data
file. Figure 5 shows the performance of MPI collective I/O
and POSIX I/O when restarting from the largest checkpoint
with process counts 256, 1,024 and 4,096. Similar to parallel
write trends, we observe POSIX I/O outperform MPI I/O; at
4,096 we report a bandwidth of 82.193 GiB/sec with POSIX
I/O.
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Fig. 4. Time break down of the three I/O components for MPI collective 1/0
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Restarts can also be performed using a different number of
processes than was used to write the original data. Under this
approach, each process reads the same amount of data from
the file and then uses communication to transmit data to the
appropriate process. These kinds of reads can be simulated
by avoiding the use of the offset-metadata file. In Figure 6,
we plot the timings to read data from a shared file with and
without the offset-metadata file at 256 and 512 processes. In
the figure, the blue bar is the time for reading data, and the
green bar is the time for data transmission. We observe that
the time taken for reading with offset-metadata is more than
the time without the metadata file. This is because of loading
and parsing overhead associated with the metadata. However,
with the offset-metadata there is no communication time as
tuples are correctly placed during file I/O itself. Therefore, the
total time with offset-metadata is less compared to the other
scheme that involves data transmission to send the tuples to
the appropriate processes.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a scalable checkpointing
framework for a simple logical-inferencing task built using
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our data-parallel Datalog [12]. We demonstrate that file-
per-process consistently outperforms MPI-collective I/O. Al-
though, the current framework is able to handle a simple
logical-inferencing task, such as the transitive closure com-
putation, we believe that a more complex I/O system will
be required to handle larger Datalog programs from domains
such as program analysis and business analysis. More complex
Datalog programs will generate hundreds or thousands of
relations. This work is the first step in developing a complete
parallel I/O solution for our data-parallel Datalog system.
Moving forward, we envision adding two degrees of freedom
in our I/O framework, one controlling the total number of
output files, and the other controlling the total number of
relations written to a file. We want to create a file-level data
layout that will facilitate effective queries on the datasets (the
current implementation is devoid of any structure) and we want
to explore compression techniques for relational data.
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