
A Visual Guide to MPI All-to-all
Nick Netterville∗, Ke Fan∗, Sidharth Kumar∗, Thomas Gilray∗
∗ University of Alabama at Birmingham, Birmingham, AL, USA

Abstract—The standard implementation of MPI_Alltoall
in MPI libraries (e.g., MPICH, Open-MPI) uses a combination
of techniques, such as the spread-out and Bruck algorithms.
The spread-out algorithm uses a linear number iterations, in
process count P , while the Bruck algorithm is logarithmic. The
Bruck algorithm transfers more data overall, but with fewer
communication steps, and is thus better suited for smaller sized
(latency-dominated) messages. MPI implementations dynamically
choose the underlying algorithm to use depending upon process
count and message size.

We have created an easy-to-use, parameterized, interactive
web-based visualization that shows the implementation details
of both the linear-step spread-out algorithm and the log-step
Bruck algorithm, along with the decision tree used to choose
between these two algorithms. Our tool visually illustrates and
animates the two algorithms, pointing out key differences such as
number of iterations, communication pattern and whether they
are in-place.

I. INTRODUCTION

MPI collectives perform an important set of global commu-
nication tasks such as broadcast, gather, and reduction, and are
an integral component of a variety of HPC applications [1]–
[5]. MPI_Alltoall is a commonly used collective routine
that facilitates all-to-all inter-process data exchange, allowing
a process to send and receive a fixed amount of data from
every other process. The state-of-the-art implementations of
MPI, such as MPICH [6] and OpenMPI [7], implement
MPI_Alltoall using a combination of algorithms, includ-
ing the Spread-out algorithm [8] and the Bruck algorithm [9].
Both these techniques are implemented using an internal
sequence of point-to-point communication. The spread-out
algorithm exchanges P − 1 (P : total number of processes)
data-blocks with other processes in P − 1 steps, with each
step exchanging one data-block. On the other hand, the Bruck
algorithm transfers data blocks in log(P ) steps, with each step
exchanging n (where 1 ≤ n < P ) data blocks [10]. In an all-
to-all communication, P of these linear spread-out transfers
take place in parallel. Therefore, the spread-out algorithm has
a linear time complexity in P while the Bruck algorithm has
a logarithmic time complexity in P .

The Hockney performance model [11], assesses the min-
imum communication cost of collective operations in terms
of both latency (the required number of communication
steps) and bandwidth (the actual data transfer time). In
MPI_Alltoall, the Bruck algorithm transfers more data
with fewer communication steps than the spread-out algorithm.
As a result, the Bruck algorithm works well for short messages
(latency-dominated), whereas the spread-out algorithm per-
forms well for larger messages (bandwidth-dominated) [12].

The standard MPI_Alltoall implementation in major li-
braries selects between these algorithms at runtime depending
on a pre-defined configuration file. This file defines a decision
tree that specifies the appropriate algorithm for any given
process counts and message sizes. MPI libraries typically
offer a default configuration file based on heuristic numbers.
Although this file can be customized, most users are unaware
of it when using the MPI_Alltoall function.

To help users understand the actual implementation of
MPI_Alltoall fully and quickly, and in a more intu-
itive way, we developed a web-based visualization system
to demonstrate the implementation details of both spread-
out algorithm and Bruck algorithms, and how to select be-
tween them based on the decision tree. The dashboard of
our visualization system is an area plot of the decision tree
that reveals which algorithm is used for the given number
of processes and message size. The implementation details of
any algorithm can then be viewed by clicking on the matching
legend. To fully grasp each algorithm, our system allows users
to explore it step by step or play all the steps at once, with
the exchanged data emphasized by animations. Overall, our
system is helpful and useful for learning the implementation of
MPI_Alltoall, which can save users a considerable amount
of time. The visualization system can be used in a pedagogical
environment to introduce collectives to new HPC users. We
make the following contributions to the literature:
1) We developed an interactive parameterized visualization to

demonstrate the functioning of the Bruck and spread-out
algorithms.

2) We use this visualization to illustrate key differences be-
tween the two algorithms.

3) We have open-sourced and hosted our visualization at https:
//naexris.github.io/mpi-vis/.

II. ALL-TO-ALL IMPLEMENTATIONS

MPI_Alltoall is a commonly used collective routine
that facilitates data exchange between every pair of processes,
allowing a process to send and receive a fixed amount of data
from every other process. With P processes, MPI_Alltoall
can be expressed as follows (see Fig. 1). Every process has
a send buffer (initialized with data), logically made out of P
data-blocks (S[0 . . . P−1]), each with n 1-byte elements. Sim-
ilarly, processes also have a receive buffer (initially empty),
logically made out of P data-blocks (R[0 . . . P − 1]) with n
1-byte elements. Both the send buffer and the receive buffer
are contiguous 1-D arrays of size P × n bytes where all
data-blocks S[0 . . . P − 1] and R[0 . . . P − 1] are laid out in
increasing block order. During communication, every process



Fig. 1: Example of all-to-all communication with 4 processes,
each with Send (S) and Receive (R) buffers made of P (= 4)
data blocks differentiated by colors. Each data-block has n
(= 3) data-elements, split by black lines. The index of each
data-block is xy (x: original rank, y: target rank).

with rank p (0 ≤ p ≤ P − 1) transmits the data-block
S[i] (0 ≦ i ≦ P − 1) to a process with rank i and receives a
data-block from rank i into the data-block R[i].

Popular MPI libraries, such as MPICH and OpenMPI,
implement MPI_Alltoall using a cocktail of algorithms,
such as pairwise, spread-out and Bruck. These algorithms are
classified into linear (P ) algorithms and logarithmic (log(P ))
algorithms (P : process count). A selection between these
these algorithms is made at runtime depending on the pre-
defined configuration file, which defines which algorithm is
utilized for the given process count and message size. For
example, Fig. 2 depicts the default decision tree that is defined
in the configuration file of MPICH. This configuration file can
be customized based on the running machine.

As stated previously, the performance of communication
operations is a function of their latency and bandwidth costs.
Latency is the fixed cost per communication step, which is
independent of message size, whereas bandwidth is the transfer
time per byte, which relies on the message size directly. There-
fore, the required number of communication steps and the total
amount of data transferred are two important metrics to assess
the time complexity of communication algorithms. In terms
of P, the Bruck algorithm requires logarithmic steps while the
spread-out algorithm requires linear steps. Other algorithms
such as modified Bruck [13] and pair-wise exchange [12] used
to implement all-to-all are mostly variants of these two core
algorithms. Our visualization therefore, focuses on these two
core algorithms.

A. Bruck algorithm

The Bruck algorithm is an efficient log-step implementation
of all-to-all communication that is suitable for latency-bound
short messages. In its original form, requires three phases:
an initial data rotation phase, a communication phase that
contains logP2 steps, and a final data rotation phase (seen
Fig. 3). The initial rotation phase performs a local copy and
moves its data up by p (the rank of the process) data-blocks
from the send buffer S to the receive buffer R. After that,
the data-block to be sent to itself is at the top of the receive
buffer R, as shown in the first two sub-figures in Fig. 3. In

Fig. 2: The decision tree in the default configuration file of the
MPICH library selects the appropriate algorithm for a given
process count and message size.

Fig. 3: Example of the Bruck algorithm with 4 processes (P0,
P1, P2 and P3). Both R and S are used during the log42 = 2
communication steps.

each communication step k, process p sends all data-blocks
whose kth bit of binary represented index is 1 to process
(p+2k) (with wrap around), receives from process (p− 2k),
and overwrites the receive buffer with the incoming data.
As in Fig. 3, each process sends data-blocks with indices
1(0001), 3(0011) to the next process at communication step
0, and overwrites the sent data-blocks with the incoming ones.
After the logP2 communication steps, all processes receive the
necessary data, however not in the correct order. Hence a final
rotation phase is performed to arrange them in the correct
order, as seen in the last two sub-figures of Fig. 3.

These three phases can be represented as follows:

1) Local shift of data-blocks: R[i] = S[(p+i)%P ]. Each data-
block (i.e., R[i], S[i]) is a fixed-length buffer of n bytes.

2) Global communication with log(P ) steps. In each step
k (0 ≦ k < log(P )), process p sends to process
((p + 2k)%P ) all the data-blocks R[i] whose kth bit of
i is 1, and receives data from process ((p − 2k)%P ) into
S, and replaces R[i] (just sent) locally.

3) Local inverse shift of data-blocks from R to R: R[i] =
R[(p− i)%P ].

Note that buffers S and R are used in the communication
step because some received data-blocks will have to be resent
in a later communication step. Pseudocode of this algorithm
is shown as Algorithm 1. It can be seen from the algorithm
(Algorithm 1 lines 6-16), that the total number of iterations
performed by the Bruck algorithm is O(logP ), unlike spread-
out, which is O(P − 1) (Algorithm 2 lines 3-10).



Algorithm 1 The Bruck Algorithm

1: p ← process rank id
2: if p ∈ P then
3: for i ∈ [0, P − 1] do
4: R[i] = S[(p+ i)%P ] // initial rotation
5: end for
6: for k = 1; k < P ; k <<= 1 do
7: for i ∈ [1, P − 1] do
8: if i & k then
9: pack data for exchanging

10: end if
11: end for
12: recvp ← (p+ k)%P
13: sendp ← (p− k + P )%P
14: send data to sendp and receive data from recvp
15: replace sent data with received data
16: end for
17: for i ∈ [0, P − 1] do
18: R[i] = R[(p− i+ P )%P ] // final rotation
19: end for
20: end if

B. Spread-out algorithm

The spread-out algorithm is a general implementation of the
all-to-all communication, which divides all-to-all communica-
tion into n (= P − 1) communication rounds, and each round
exchanges one data-block between two processes using non-
blocking point-to-point communication functions. Specifically,
each process posts all receiving requests using MPI_Irecv
in a loop, then all sending requests using MPI_Isend in a
loop, followed by an MPI_Waitall. Furthermore, in order to
avoid communication congestion, each process distributes the
sources and destinations based on its rank, such that each pro-
cess sends to a different target process at each communication
step. Pseudocode of this algorithm is shown as Algorithm 2:

Algorithm 2 The spread-out Algorithm

1: p ← process rank id
2: if p ∈ P then
3: for i ∈ [0, P − 1] do
4: src ← (p+ i)%P
5: p receives data-block src, p from src
6: end for
7: for i ∈ [0, P − 1] do
8: tag ← (p− i+ P )%P
9: p sends data-block p, tag to tag

10: end for
11: Wait for all communication requests to be completed.
12: end if

III. OUR VISUALIZATION TOOL

We have developed a visualization tool to clearly demon-
strate all steps of the Bruck and spread-out algorithms. The
web-based tool is free and open for everyone hosted at

https://naexris.github.io/mpi-vis/ with the code base at https:
//github.com/naexris/mpi-vis/. It has the potential to be used
in a pedagogical environment such as parallel computing
classes and MPI related workshops. Along with demonstrating
the workings of Bruck and spread-out, it can also illustrate
the key differences between them through the visual and
dynamically updated information that is presented in a clear
and concise way. It focuses on readability and interactivity to
ease comparing various inputs and, in particular, gives insight
about how those inputs affect the number of communication
steps and the amount of aggregate data sent. We hope to make
this tool available to users who want to teach, present, or learn
about the HPC topics presented through this tool. We believe
that users who want to teach or present these topics, such
as professors, will benefit from the added clarity of visuals
and animations compared to traditional methods seen from
PowerPoint slides and static figure representations. Users who
want to learn, such as students, will benefit from the easy
to understand step by step approach, where each visual step
can offer insight through dynamically updated readings and
visuals.

The visualization tool comes with information to help those
interested in learning more about how these MPI_Alltoall
algorithms work. For this version, MPI_Alltoall is the
focus of the tool and the only listed collective routine on the
front page. Information on MPI_Alltoall is given when
navigated to to provide more information on the collective.
A list of the supported algorithms, spread-out and Bruck, are
shown with extended information summarizing how these two
algorithms work. Clicking on an algorithm will allow a user
to navigate to that algorithm’s visualization page.

A. Creating a parameterized visualization

The visualization page, shown in Fig. 4, is the main feature
of the tool. Its layout offers a step by step visual that is
designed with the following goals in mind:
1) Illustrate the step-by-step process of a selected algorithm

with intermediate visuals.
2) Offer key insights to the current displayed step (Fig. 5).
3) Offer the ability to parameterize process count and ele-

ments per data-block.
4) Supply reasoning why certain algorithms might be used for

certain parameter values.
Each part of this visualization is dynamically updated such

that information is supplied for every step, and intermediate
step, of the process. As for the content itself, users can select
either spread-out or Bruck to visualize. Once an algorithm
is selected, the view displays three sections. At the top, the
tool allows users to adjust parameters such as the number of
processes and the elements per data block. Process count can
currently be altered from 2− 32 and elements per data-block
can be altered from 1−4. These values were chosen mainly due
to screen space and visual clarity. Initial data values, shown in
the panels in the middle, will update in real time to reflect the
changes done from these parameters. The parameters can be
adjusted as many times as needed until a step is initiated. Once



Fig. 4: Example of visualization page for the spread-out algorithm with initialized data. Eight processes and one elements per
data-block has been parameterized.

parameters have been set, a user can execute each step of the
selected algorithm to see how data is moved between processes
and buffers. The footer of the visualization page contains four
buttons that allow the user to control how steps proceed. Steps
can advance manually by pressing STEP or automatically with
PLAY. STOP will stop the currently playing animation, and
RESET will return to the initial state of data. Info on each step
is also provided as the user reaches them from the left side of
the footer. A clickable menu popup, shown in Fig. 5, provides
context about the current step that is displayed. All info in
this panel is dynamically updated between each step. For
example, the bit value example mentioned at the end of Fig. 5
is updated for each Bruck communication step. To the right
of the step name, two sections also exist that show the total
blocks transferred and the blocks transferring this step. Various
animations are displayed to accompany intermediate changes
to these values. Overall, this design provides an informative
experience tailored for each algorithm so that can help users
learn as they go.

For the main view, different kinds of visualization panels
are provided to display step information for the algorithm.
Currently, two types of panels exist: data view panels and the
adjacency matrix panel. These panels can be specified when
implementing an algorithm to provide the best visualization
approach on a per algorithm basis. The most important and
always available panel is the data view. In the data view,
processes and their data blocks are denoted by colors and
integers for clarity. Each initial data in a process is denoted
by its respective process ID, and each data block within a

Fig. 5: Example of a current step (Bruck Comm step k = 0)
information panel. It can be opened from the footer in Fig. 4.

process is denoted by a unique color. This setup allows the
visualization to easily differentiate between data while not
being overly cumbersome to look at. The end result makes for
a clean visualization with easily discernible data. Additionally,
a data value’s shape and variant is altered to further denote
when it is being manipulated during a communication step
when data is present. Outlined ovals show data that is currently
not being altered (Fig 6a), outlined rectangles show data that
is about to be manipulated (Fig 6b), and filled in chips show
data that has been altered or moved (Fig 6c). Note that if an
integer is not present, no data is present in that block (Fig 6d).
The data view can work in-place with one panel, or with a
send and receive buffer between two different panels. The
different visualization panel options can be configured on a per



(a) Not in use (b) In use (c) Moved (d) Null

Fig. 6: Example of different types of data blocks. The color
corresponds to the block and the integer corresponds to the
process it came from.

algorithm basis for newly added algorithms. Panels are chosen
based on the proposed best way to convey the algorithm at
hand.

Fig. 7: Example of the adjacency matrix after Bruck commu-
nication step k = 0 has completed with 8 processes.

B. Bruck Visualization
For Bruck, the visualization tool’s middle section comes

with a data view on the left and an adjacency matrix on
the right (Fig. 7). Because Bruck communication steps are
altered in memory, a receive buffer becomes unnecessary and
is instead replaced with an adjacency matrix. The send buffer
is renamed to a data view, where the data is altered in-place
and displayed to the user. As mentioned before, the colors,
integer values, and fill correspond to the types of data that are
present within the data view (Fig. 6). The adjacency matrix
adds a history of where processes are sending and receiving
data-blocks from. Its color meaning is slightly different and
is labeled in Fig. 7. Green indicates when a process sends
data to another process. Red indicates when a process receives
data from another process. Grey indicates when either a send
or receive happened on a previous step. These two panels
combined offer a helpful look into algorithms like Bruck,
because it can be difficult to follow in-place movements
between multiple processes.

In Fig. 8, example images of the beginning of each step for
Bruck with eight processes and a block size of one is shown.
In Fig. 8a, the data is initialized across the eight processes.
Fig. 8b performs the first rotation, where S[i] = S[i + p] (p:
rank). For example, P01’s data blocks are shifted by one. No
communication is done in this step so the adjacency matrix is
unmodified.

Because the example in Fig. 8 has eight processes, three
communication steps are performed for k = [0..2]. Fig. 8c
involves the initial setup for communication step k = 0. Data
blocks that will be moved are marked, and the adjacency
matrix is updated to reflect the send operations that will be
made. That is, process i will send to rank (i + 2k) all data
blocks whose kth bit is 1. Fig. 8d shows the initial setup for
communication step k = 1. All data blocks whose kth bits
are 1 are marked for sending. Similarly, Fig. 8e shows the
initial setup for communication step k = 2. Finally, Fig. 8f
shows the final rotation that is performed to ensure that data
blocks are in order. Again, no communication is involved in
this step so the adjacency matrix is unaltered. At this point, the
visualization has completed and can be rerun with the same
or updated parameters as many times as needed.

C. Spread-out Visualization

The Spread-out visualization page offers a slightly different
view that comes with a send buffer and receive buffer panel.
This is done because spread-out is different from Bruck in
that it is not altered in place as data is instead copied from
one buffer to another. The initial data setup (Fig. 9a) is
however exactly the same, depending on the process count
and block size. For Fig. 9, eight processes and a block size of
one is shown. As noted previously, data blocks are presented
differently based on its role in the current step (Fig. 6). Since
data is copied over from one buffer to another, blocks will
stay filled in the send buffer after they are sent to the receive
buffer. This is contrary to Bruck, which only marks them at
each step due to being in place.

Fig. 9b to 9h shows the communication steps for k = [0, 6].
For k = 0 in Fig. 9b, process p sends to process (rank+k)%P ,
where P is the total number of processes. So, in step k = 0,
processes send data one process over into the sending process’s
rank index. Step k = 1, in Fig. 9c, will increment this by one
and each process will send data two processes over. For eight
processes, communication steps continue for (P − 1) steps
until all data has been transferred like in Fig. 9i.

D. Implementation details

The visualization tool is built with Vue.js 3 and Vuetify.
Vue.js is a progressive JavaScript Framework that enables
our tool to be highly responsive as a single page application
(SPA) with dynamic page routing [14]. Direct links to specific
collectives or algorithms can be navigated to, and shared, so
users can start visualizing data immediately. Pages are also set
up in a way that makes it easy to expand this work and add
support for more collectives and algorithms when needed.



(a) Initial state (b) First rotation

(c) Communication step k = 0 (d) Communication step k = 1

(e) Communication step k = 2 (f) Final rotation

Fig. 8: Bruck Visualization Example

Under the hood, the code implementation of an algorithm
can be added with relative ease. The display logic and al-
gorithm logic are separated in such a way that adding a
new algorithm will never require adjusting the display logic
files. The display logic will pass the state of the data to
the algorithm currently selected. Because Vue.js allows for
dynamic routing, an algorithm is determined by the route (e.g.
/vis/alltoall/1 redirects to algorithm function ”1” for
MPI_Alltoall). So, if one wanted to add a new algorithm,
they would stub out a function under the next increment, 2,
leading it to be available at /vis/alltoall/2. The format
of the function written will be very similar to the actual logic
of the algorithm being implemented. The key difference is that
one must account for the current step, which the display logic
will pass in. At each step, the algorithm can pass back data
to the display logic to update states and information given on
the page.

Vuetify is used on top of Vue.js to provide a design frame-
work styled after Google’s Material Design [15]. It enables the
tool to be visually easy to comprehend while also being easy
for any device or browser to run. Mobile device and computer
browsers can run the tool with identical feature parity. This
allows anyone to access it from any type of device. Only slight
style changes will occur to ensure the best experience on each
type of screen. We also use ApexCharts.js to provide a simple
graph visualization of Bruck and spread-out complexity [16].
Overall, the technologies incorporated into this tool make it
easy to use, navigate, and expand.

E. Pedagogical Environments

The visualization tool provides a number of potential use
cases for pedagogical environments. Besides offering a visual
understanding of different implementation strategies, the tool
provides the ability to quantify the difference in the amount of



(a) Initial state (b) Communication step k = 0

(c) Communication step k = 1 (d) Communication step k = 2

(e) Communication step k = 3 (f) Communication step k = 4

(g) Communication step k = 5 (h) Communication step k = 6

(i) Final step

Fig. 9: Spread-out Visualization Example



data transmitted between Bruck and Spread-out. The quantifi-
cation provides users, such as first year HPC graduate students,
insight on why a specific algorithm may be chosen over
another for a specific amount of processes. For example, the
insight addresses questions concerning latency and bandwidth
restrictions.

Step count can also be compared between Bruck and
Spread-out. Students can adjust the process count and see
how it affects each algorithm’s communication step count. The
detailed step info also provides added context of the chosen
algorithm so that students can understand steps more easily.

In the future, work can be done to open the framework of
this tool to allow a user to add in their own implementations
directly through the web page. Currently, this can only be
done offline before the website is compiled for the web. For
example, an instructor could assign a project that asks a student
to implement a variation of Bruck. The student would be able
to see the visualization tool work in real time based on their
adjustments. Change in the framework would also allow users
to adjust implementations that already exist, such as adjusting
the logarithmic complexity of Bruck.

IV. CONCLUSION AND FUTURE WORK

In this paper, we designed a parameterized visualization
system for MPI_Alltoall, one of the most widely used
collective routines, that illustrates the technical details of the
spread-out algorithm and the Bruck algorithm, as well as the
selection decision tree between them. This system depicts an
area plot of the decision tree that identifies which algorithm
is being used for any given number of processes and message
size. It also allows for a thorough technical comparison
of the spread-out algorithm and the Bruck algorithm, two
classic algorithms utilized in MPI_Alltoall. Our system
is intended for HPC users who would like to learn or teach
about the detailed implementation of MPI_Alltoall, which
can greatly cut the learning curve.

For now, we only focus on the collective routine
MPI_Alltoall and demonstrate the advantage of our
visualization system in helping users fully understand the
algorithms utilized in MPI_Alltoall, thereby shortening
the learning curve dramatically. There is also a renewed
interest [17]–[19] in optimizing all-to-all communication
by modifying the Bruck algorithm to take advantage of
the deepening memory hierarchy of the modern HPC
system. In particular, these algorithms take advantage of the
multi-node-multi-core architecture, developing hierarchical
versions of the Bruck algorithm. We also plan to extend our
visualisation to incorporate these modified versions of the
Bruck algorithm. Additionally, several other collective routines
may be visualized in this manner, such as MPI_Allgather,
MPI_Alltoallv [10] and MPI_Allreduce. Both
MPI_Allgather and MPI_Allreduce are commonly
used in HPC applications. MPI_Allgather enables each
process to collect data from all other processes, whereas
MPI_Allreduce enables each process to combine values
from all processes. The standard implementations of both

these collective routines, like MPI_Alltoall, use a
combination of several algorithms and a decision tree to
select between them. As a result, we intend to enable our
system to visualize these collective routines in the future.

V. ACKNOWLEDGEMENT

This work was funded in part by NSF RII Track-4 award
2132013 and NSF collaborative research award 2217036. We
are thankful to the ALCF’s Director’s Discretionary (DD)
program for providing us with compute hours to run our
experiments on the ThetaGPU supercomputer located at the
Argonne National Laboratory.

REFERENCES

[1] S. Kumar and T. Gilray, “Distributed relational algebra at scale,” in
International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE, 2019.

[2] J. Doi and Y. Negishi, “Overlapping methods of all-to-all communication
and fft algorithms for torus-connected massively parallel supercom-
puters,” in SC’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2010, pp. 1–9.

[3] H. Sundar, D. Malhotra, and G. Biros, “Hyksort: a new variant of hy-
percube quicksort on distributed memory architectures,” in Proceedings
of the 27th international ACM conference on international conference
on supercomputing, 2013, pp. 293–302.

[4] S. Kumar and T. Gilray, “Load-balancing parallel relational algebra,” in
International Conference on High Performance Computing. Springer,
2020, pp. 288–308.

[5] K. Fan, K. Micinski, T. Gilray, and S. Kumar, “Exploring mpi collec-
tive i/o and file-per-process i/o for checkpointing a logical inference
task,” in 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2021, pp. 965–972.

[6] https://www.mpich.org, MPICH Home Page.
[7] https://www.open-mpi.org, OpenMPI Home Page.
[8] Q. Kang, R. Ross, R. Latham, S. Lee, A. Agrawal, A. Choudhary, and

W.-k. Liao, “Improving all-to-many personalized communication in two-
phase i/o,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2020, pp. 1–13.

[9] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient
algorithms for all-to-all communications in multiport message-passing
systems,” IEEE Transactions on parallel and distributed systems, vol. 8,
no. 11, pp. 1143–1156, 1997.

[10] K. Fan, T. Gilray, V. Pascucci, X. Huang, K. Micinski, and S. Kumar,
“Optimizing the bruck algorithm for non-uniform all-to-all communi-
cation,” in Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing, 2022, pp. 172–184.

[11] R. W. Hockney, “The communication challenge for mpp: Intel paragon
and meiko cs-2,” Parallel computing, vol. 20, no. 3, pp. 389–398, 1994.

[12] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[13] J. L. Träff, A. Rougier, and S. Hunold, “Implementing a classic: Zero-
copy all-to-all communication with mpi datatypes,” in Proceedings of
the 28th ACM international conference on Supercomputing, 2014.

[14] https://vuejs.org, Vue.js Home Page.
[15] https://vuetifyjs.com, Vuetify Home Page.
[16] https://apexcharts.com, ApexCharts.js Home Page.
[17] A. Bienz, S. Gautam, and A. Kharel, “A locality-aware bruck allgather,”

arXiv preprint arXiv:2206.03564, 2022.
[18] P. Alizadeh, A. Sojoodi, Y. Hassan Temucin, and A. Afsahi, “Efficient

process arrival pattern aware collective communication for deep learn-
ing,” in EuroMPI/USA’22: 29th European MPI Users’ Group Meeting,
2022, pp. 68–78.

[19] G. Chochia, D. Solt, and J. Hursey, “Applying on node aggregation
methods to mpi alltoall collectives: Matrix block aggregation algorithm,”
in EuroMPI/USA’22: 29th European MPI Users’ Group Meeting, 2022,
pp. 11–17.


