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The Two-phase Bruck algorithm is a promising approach for 
extending the Bruck algorithm to non-uniform all-to-all 
communication problems.
This approach proposed two solutions to the two challenges:

1. Two-phase transmission at each communication step: the 
metadata-exchange phase followed by the data-exchange 
phase at each communication step. The metadata-exchange 
phase prepares for the data-exchange phase. 

2. A temporary buffer that is used alternately with the receive 
buffer to hold the large received intermediate data-
elements.

This algorithm offers us a considerable improvement in rooms.

Future Work

Background: Non-Uniform all-to-all communication allows each 
process to send different amounts of data to all other processes. 
This routine is one of the most important and extensively utilized 
operations in MPI. However, due to its global and non-uniform 
nature, it is typically difficult to scale and optimize. 

Introduction & Motivation

Bruck’s algorithm is a classic uniform all-to-all algorithm that 
reduces the total number of communication steps from P to log(P). 
It is achieved by transmitting an overall larger amount of data but 
over a smaller number of iterations.

Bruck’s Algorithm 

The Padded Bruck algorithm is a natural extension strategy for 
applying Bruck’s algorithm to non-uniform all-to-all problems 
by transforming them into uniform all-to-all problems. 

Padded Bruck Algorithm

All our experiments are performed on the Theta supercomputer 
at the Argonne Leadership Computing Facility (ALCF). 

Evaluation

Each process has 4 data-
blocks with different 
colors. Each data-block 
has a different number of 
data-elements.

The Spread-out algorithm is a 
general implementation of non-
uniform all-to-all communication 
based on non-blocking point-to-
point communication. It takes (P-1) 
(linear in number of processes) 
communication steps.

Figure: Non-uniform all-to-all communication example.

Figure: Spread-out algorithm example.

Motivation: Linear-complexity performs poorly when applications 
are deployed on millions of cores, especially for short-message 
communication, which is dominated by latency. Meanwhile, there 
is no logarithmic non-uniform all-to-all algorithm that has been 
adopted by MPI libraries. We are investigating the possibility of 
expanding the logarithm Bruck algorithm for non-uniform all-to-all 
communication.

Figure: Three phases of the Bruck algorithm.

Bruck’s algorithm, in its original form, requires three phases: a 
local initial rotation phase, log(P) communication steps, and a 
local final rotation phase. 

Figure: Bruck algorithm example.

1. A local initial rotation phase: R[i] = S[(p + i) % P]
2. The log(P) communication steps: in each step k, process p 

sends to process                    all the data-blocks R[i] whose      
bit of i is 1, and receives data from process                          into 
S[i], and replace R[i] with S[i] locally. 

3. A local final rotation phase: R[i] = R[(P - i + P) % P]

Assume each process has a send buffer S (filled with data), which 
is logically comprised of P data-blocks. Each data block is made 
up of n data elements that are always transferred together. 
Similarly, processes also have a receive buffer R (initially empty). 
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Bruck’s Algorithm Fails to support Non-uniform 
All-to-all Communication
Bruck’s algorithm fails to support messages of varying sizes for 
two main reasons.
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1) Each process is unaware of how 
much data to expect during each of the 
intermediate log(P) steps. 

2) The received data elements could be 
too large to fit into the segment in the 
send buffer.

P0 sends 3 elements to P1. 
But P1 doesn’t know how 
many elements it should 
receive from P0.

P1 sends one element 
out. However, it receives 
2 elements from P0.

Figure: Padded Bruck algorithm example.

This algorithm has three phases:
1. Padded each data-blocks with the global maximum size of 

all (P x P) data-blocks.
2. Apply the Bruck algorithm to conduct uniform all-to-all 

communication among processes.
3. All processes perform a local scan to retrieve the actual 

data from the padded buffer.

This algorithm does not increase the latency cost. 

Architecture: Intel-Cray XC40
Cores: 281,088
Speed: 11.7 petaflops
Memory: 843 TB
High-bandwidth Memory: 70TB

We ran each experiment 25 times and plotted the medians along 
with the median-absolute deviations (as error bars). 

Figure: Running time of Bruck Implementations 
(N = 32). 

The Bruck-dt is implemented by 
using MPI-derived datatypes, while 
Bruck is done with memcpy. We 
observe that implementation with 
an MPI-derived datatype performs 
poorly for short messages. 

(a) 256 processes (b) 512 processes

(c) 1024 processes (d) 2048 processes

(e) 4096 processes (f) 8192 processes
Figure: Data scaling

In our experiments, every process generates data-blocks whose 
sizes follow a continuous uniform distribution. This distribution 
ensures that data-block sizes are uniformly sampled between 0 and 
the maximum data-block size (N), thus yielding an average data-
block of size N/2.

In each experiment, the maximum data-block size (N) in this 
experiment ranged from 2 bytes to 1, 024 bytes. Our Padded 
Bruck technique outperforms MPI_Alltoallv in most cases. For 
example, the Padded Bruck algorithm is 32.52% faster than 
MPI_Alltoallv at 256 bytes with 512 processes. 

(a) N = 32 bytes (b) N = 64 bytes 
Figure: Weak scaling

In a weak-scaling experiment on all-to-all communication, the 
workload increased by 4 times with the doubling of processes. 
Therefore, we saw an increase in execution time with increasing 
process counts.
For each experiment, we fixed the maximum data-block size, and 
varied the number of processes from 128 to 8,192.
We observe that for these data-block sizes, Padded Bruck 
outperforms MPI_Alltoallv by up to 8,192 processes. For example, 
we observed a 73.95% improvement in the performance of 8,192 
processes.
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Figure: Performance Model

The performance model can 
be used to answer questions 
such as, with P = 300 and N 
= 400, should we use the 
Padded Bruck, or Cray’s 
MPI_Alltoallv? 

We attempt to answer this problem by identifying a bounded space 
of N (maximum size of data-block), P (number of processes) pairs 
for which the scheme is expected.
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