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nature, it 1s typically difficult to scale and optimize. Figure: Bruck algorithm example.

Architecture: Intel-Cray XC40 (a) N =32 bytes _ . (b) N = 64 bytes
o . . . Cores: 281.088 Figure: Weak scaling
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blocks with different 2. The log(P) communication steps: in each step k, process p Memory: 843 185 workload increased by 4 times with the doubling of processes.
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Figure: Non-uniform all-to-all communication example. 3. A local final rotation phase: R/i/ = R/(P - i+ P) % P] W © MECIAN-abSOIULE GEVIALONS 145 SOt Dars varied the number of processes from 128 to 8,192.
Pose all receive requests: MPI_Irecv . 1:3 T Bruck We observe that for these data-block sizes, Padded Bruck
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uniform alloall communication Aloop Bruck’s Algorithm Fails to support Non-uniform 0 55— an MPLderived datatype performs processes.
point communication. It takes (P-1) Pose all send requests: MPL_Isend All-to-all Communication ©), = 8:3 F poorly for short messages.
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adopted by MPI libraries. We are investigating the possibility of 2) The received data elements could be ‘1) ; P1 sends one element ‘éloz | ~AHOatV:
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communication. send buffer. 210 7, 575 Figure: Performance Model
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Bruck’s algorithm 1s a classic uniform all-to-all algorithm that Padded Bruck Algorithm T e
reduces the total number of communication steps from P to log(P). The Padded Bruck algorithm 1s a natural extension strategy for O] - Paddedsruck F Ee ik Future Work @
It 1s achieved by transmitting an overall larger amount of data but applying Bruck’s algorithm to non-uniform all-to-all problems | <0 The Two-phase Bruck algorithm 1s a promising approach for
over a smaller number of iterations. by transforming them into uniform all-to-all problems. | i extending the Bruck algorithm to non-uniform all-to-all
. ; | i communication problems.
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Similarly, processes also have a receive buffer R (1nitially empty). This algorithm does not increase the latency cost. MPI Alltoallv at 256 bytes with 512 processes. us the compute hours on the Theta Supercomputer.



