e eC21

St.Lovuis, |science
MO |& beyond.

o [[140 180
Introduction & Motivation O po [T L TEIR—{H] [T}, ATTETETR—[ETIET Evaluation © 20 - radsems i St

Background: Non-Uniform all-to-all communication allows each S NINNAND AL [[TRITRTR IR . g 2120
5) 4 different s of data to all oth L All our experiments are performed on the Theta supercomputer § g 100
rocess to send different amounts of data to all other processes. : : : - 2 o0 2 @
pro .. . P . PR AELE 1181 A IRTE SREUERESIL at the Argonne Leadership Computing Facility (ALCF). E £ o0
This routine 1s one of the most important and extensively utilized - w0
. . . . P31 B[PB LB B > 3 [2 : 2 31112 (L]][O O P — | Fad 20 /Z 20

Op eratlons 11 MPI However’ due tO 1tS gIObal and non-unlform @ Initial Rotation @ Comm step 0 @ Comm step 1 @ Inverse Rotation ArgOn ne é : | ‘ 07178 256 5T102tal numlb%2r40f proczegzsts 4096 8192 0 128 256 5T102ta| numlboe2r40f procigiS 4096 8192

NATIONAL LABORATORY

nature, it 1s typically difficult to scale and optimize. Figure: Bruck algorithm example.

Architecture: Intel-Cray XC40 (a) N =32 bytes _ . (b) N = 64 bytes
o . . . Cores: 281.088 Figure: Weak scaling
£ 1. A local initial rotation phase: R/i] = S/(p + i) % P] o
. Each process has 4 data- Speed: 11.7 petaflops In a weak-scaling experiment on all-to-all communication, the
blocks with different 2. The log(P) communication steps: in each step k, process p Memory: 843 185 workload increased by 4 times with the doubling of processes.
P2 colors. Bach data-block sends to process (p + 2k)ypall the data-blocks R/i/ whose ken High-bandwidth Memory: 70TB Therefore, we saw an increase in execution time with increasing
o ldliaae?gnfe;‘;g number of bit of i is 1, and receives data from process (p — 2% + p)9,pinto process counts.
) - ' S/i/, and replace R/i] with S/i/ locally. ‘ ' ' . . :
send butier Receive buficr [. [[4 thr?}? eaclzl.expegmintt 23 “@fﬁs anc(l plotted Ehe I)nedlans Ao For each experiment, we fixed the maximum data-block size, and
: Pl — : 1 median- iation rror bars). .
Figure: Non-uniform all-to-all communication example. 3. A local final rotation phase: R/i/ = R/(P - i+ P) % P] W © MECIAN-abSOIULE GEVIALONS 145 SOt Dars varied the number of processes from 128 to 8,192.
Pose all receive requests: MPI_Irecv . 1:3 T Bruck We observe that for these data-block sizes, Padded Bruck
2 o.) The Bruck-dt is implemented by
The Spread-out algorithm is a @ @ £, . SrUEkGCE using MPLderived datatypes, while outperforms MPI_Alltqallv by up to 8,192 processes. For example,
general implementation of non- o 50 Bruck is done with memcpy. We we observed a 73.95% improvement in the performance of 8,192
. o . . . c bserve that implementation with
uniform alloall communication Aloop Bruck’s Algorithm Fails to support Non-uniform 0 55— an MPLderived datatype performs processes.
point communication. It takes (P-1) Pose all send requests: MPL_Isend All-to-all Communication ©), = 8:3 F poorly for short messages.
(linear in number of processes) @ @] , _ , , 128 256 | 512 1(}24 2048 4096
B Bruck’s algorithm fails to support messages of varying sizes for Total number of process
ps. . : ot - Pert Model
tWO main reasons. Figure: Running time of Bruck Implementations criormance 0ac @
F S dA loopl h 1 o (N=32) . T LT
igure: Spread-out algorithm example. 1 PO sends 3 elements to P1. . 8 _— e e
.. ; loxi ¢ — oot 1) Each process 1s unaware of how : —~ But P1 doesn’t know how In our experiments, every process generates data-blocks whose %;ZZ . The performance model can
Motivation: Lmea.r-.comp exity per orms poorly when app ications much dzt'a to 1expect during each of the [FI many elfmensoit should sizes follow a continuous uniform distribution. This distribution 5500 ~ be used to answer questions
are deployed on mill}u;ln.s of cores, especially for short-m}f‘slsagﬁ intermediate log(P) steps. fy receive from PO ensures that data-block sizes are uniformly sampled between 0 and S 00 , Sujgoasaﬁmildp =300 :Eld N
: . . 5 = , should we use the
SOTITIIBHCAIAGTaL, ByistiEll IS dominated by LY. Meanwhile, there : the maximum data-block size (N), thus yielding an average data- S PaddedBruck Padded Bruck. or Cray’s
1s no logarithmic non-uniform all-to-all algorithm that has been PO Pl block of size N/2 5200 DT Al y
adopted by MPI libraries. We are investigating the possibility of 2) The received data elements could be ‘1) ; P1 sends one element ‘éloz | ~AHOatV:
expanding the logarithm Bruck algorithm for non-uniform all-to-all too large to fit into the segment in the [[0 gfle?nzvggvg;ﬁ o T MmLAoal i T eLAsaly T rimmberofprocesses
communication. send buffer. 210 7, 575 Figure: Performance Model
i 3 g6 §” We attempt to answer this problem by identifying a bounded space
£ E o of N (maximum size of data-block), P (number of processes) pairs
1L ; for which the scheme 1s expected.
Bruck9s Algorithm @ @ ()l\;>;m6um block size (bytes) (b) ;a;ir;um block size (bytes)
)) _) _ . a Processes Processes
Bruck’s algorithm 1s a classic uniform all-to-all algorithm that Padded Bruck Algorithm T e
reduces the total number of communication steps from P to log(P). The Padded Bruck algorithm 1s a natural extension strategy for O] - Paddedsruck F Ee ik Future Work @
It 1s achieved by transmitting an overall larger amount of data but applying Bruck’s algorithm to non-uniform all-to-all problems | <0 The Two-phase Bruck algorithm 1s a promising approach for
over a smaller number of iterations. by transforming them into uniform all-to-all problems. | i extending the Bruck algorithm to non-uniform all-to-all
. ; | i communication problems.
2. Log(P) communication steps. &0 > I 0 0
i I : e T e block e tyten) Tt wemumbeccszetien This approach proposed two solutions to the two challenges:
E @ E q 1 1 - X (c) 1024 processes (d) 2048 processes 1. Two-phase transmission at each communication step: the
=, E A RN R "% e metadata-exchange phase followed by the data-exchange
(k0) G () (P 2;) Z " D Padding & Allto-sll communization 8 Filter E:: 2 o phase at each communication step. The metadata-exchange
o - . | | Figure: Padded Bruck algorithm example. i o phase prepares for the da.ta—exchange phase. | |
I. Local initial rotation. 3. Local inverse rotation. | | : £ w00 2. A temporary buffer that is used alternately with the receive
Figure: Three phases of the Bruck algorithm. This algorithm has three phases: . 202 buffer to hold the large received intermediate data-
1. Padded each data-blocks with the global maximum size of B T o e — elements.
’ ' In 1ts origi ' : 4096 8192 : : : : :
Bka. > glgonthrp, n its original form, HEHITES three phases: a all (P x P) data-blocks. (©) PTOCERSER © PTOSERES This algorithm offers us a considerable improvement in rooms.
local 1nitial rotation phase, log(P) communication steps, and a 5 Anolv the Bruck aleorith q " . . Figure: Data scaling
local final rotation phase. . Apply t .e mc algorithm to conduct unitorm all-to-a | | | | |
communication among processes. In each experiment, the maximum data-block size (N) 1n this
Assurpe each process has a send buffer S (filled with datq), which 3. All processes perform a local scan to retrieve the actual experiment 1janged from 2 bytes to 1, 024 byt§s. Our Padded Acknowledsements
1s logically comprised of P data-blocks. Each data block 1s made data from the padded buffer. Bruck technique outperforms MPI Alltoallv in most cases. For e
up of n data elements that are always transferred together. example, the Padded Bruck algorithm 1s 32.52% faster than We thank the ALCF's Directors Discretionary awards for offering

Similarly, processes also have a receive buffer R (1nitially empty). This algorithm does not increase the latency cost. MPI Alltoallv at 256 bytes with 512 processes. us the compute hours on the Theta Supercomputer.

