
Padding to Extend the Bruck Algorithm for Non-uniform All-
to-all Communication

Ke Fan (kefan@uab.edu), Thomas Gilray (gilray@uab.edu), Sidharth Kumar (sid14@uab.edu)

We thank the ALCF's Directors Discretionary awards for offering
us the compute hours on the Theta Supercomputer.

Acknowledgements

The Two-phase Bruck algorithm is a promising approach for
extending the Bruck algorithm to non-uniform all-to-all
communication problems.
This approach proposed two solutions to the two challenges:

1. Two-phase transmission at each communication step: the
metadata-exchange phase followed by the data-exchange
phase at each communication step. The metadata-exchange
phase prepares for the data-exchange phase.

2. A temporary buffer that is used alternately with the receive
buffer to hold the large received intermediate data-
elements.

This algorithm offers us a considerable improvement in rooms.

Future Work

Background: Non-Uniform all-to-all communication allows each
process to send different amounts of data to all other processes.
This routine is one of the most important and extensively utilized
operations in MPI. However, due to its global and non-uniform
nature, it is typically difficult to scale and optimize.

Introduction & Motivation

Bruck’s algorithm is a classic uniform all-to-all algorithm that
reduces the total number of communication steps from P to log(P).
It is achieved by transmitting an overall larger amount of data but
over a smaller number of iterations.

Bruck’s Algorithm

The Padded Bruck algorithm is a natural extension strategy for
applying Bruck’s algorithm to non-uniform all-to-all problems
by transforming them into uniform all-to-all problems.

Padded Bruck Algorithm

All our experiments are performed on the Theta supercomputer
at the Argonne Leadership Computing Facility (ALCF).

Evaluation

Each process has 4 data-
blocks with different
colors. Each data-block
has a different number of
data-elements.

The Spread-out algorithm is a
general implementation of non-
uniform all-to-all communication
based on non-blocking point-to-
point communication. It takes (P-1)
(linear in number of processes)
communication steps.

Figure: Non-uniform all-to-all communication example.

Figure: Spread-out algorithm example.

Motivation: Linear-complexity performs poorly when applications
are deployed on millions of cores, especially for short-message
communication, which is dominated by latency. Meanwhile, there
is no logarithmic non-uniform all-to-all algorithm that has been
adopted by MPI libraries. We are investigating the possibility of
expanding the logarithm Bruck algorithm for non-uniform all-to-all
communication.

Figure: Three phases of the Bruck algorithm.

Bruck’s algorithm, in its original form, requires three phases: a
local initial rotation phase, log(P) communication steps, and a
local final rotation phase.

Figure: Bruck algorithm example.

1. A local initial rotation phase: R[i] = S[(p + i) % P]
2. The log(P) communication steps: in each step k, process p

sends to process all the data-blocks R[i] whose
bit of i is 1, and receives data from process into
S[i], and replace R[i] with S[i] locally.

3. A local final rotation phase: R[i] = R[(P - i + P) % P]

Assume each process has a send buffer S (filled with data), which
is logically comprised of P data-blocks. Each data block is made
up of n data elements that are always transferred together.
Similarly, processes also have a receive buffer R (initially empty).

(𝑝 + 2!)%𝑃 𝑘!"
(𝑝 − 2! + 𝑃)%𝑃

Bruck’s Algorithm Fails to support Non-uniform
All-to-all Communication
Bruck’s algorithm fails to support messages of varying sizes for
two main reasons.

0

1

1

2

2

3

1

2

0

0

3

P0 P1

0

1

1

2

2

3

1

2

0

0

3

P0 P1

1) Each process is unaware of how
much data to expect during each of the
intermediate log(P) steps.

2) The received data elements could be
too large to fit into the segment in the
send buffer.

P0 sends 3 elements to P1.
But P1 doesn’t know how
many elements it should
receive from P0.

P1 sends one element
out. However, it receives
2 elements from P0.

Figure: Padded Bruck algorithm example.

This algorithm has three phases:
1. Padded each data-blocks with the global maximum size of

all (P x P) data-blocks.
2. Apply the Bruck algorithm to conduct uniform all-to-all

communication among processes.
3. All processes perform a local scan to retrieve the actual

data from the padded buffer.

This algorithm does not increase the latency cost.

Architecture: Intel-Cray XC40
Cores: 281,088
Speed: 11.7 petaflops
Memory: 843 TB
High-bandwidth Memory: 70TB

We ran each experiment 25 times and plotted the medians along
with the median-absolute deviations (as error bars).

Figure: Running time of Bruck Implementations
(N = 32).

The Bruck-dt is implemented by
using MPI-derived datatypes, while
Bruck is done with memcpy. We
observe that implementation with
an MPI-derived datatype performs
poorly for short messages.

(a) 256 processes (b) 512 processes

(c) 1024 processes (d) 2048 processes

(e) 4096 processes (f) 8192 processes
Figure: Data scaling

In our experiments, every process generates data-blocks whose
sizes follow a continuous uniform distribution. This distribution
ensures that data-block sizes are uniformly sampled between 0 and
the maximum data-block size (N), thus yielding an average data-
block of size N/2.

In each experiment, the maximum data-block size (N) in this
experiment ranged from 2 bytes to 1, 024 bytes. Our Padded
Bruck technique outperforms MPI_Alltoallv in most cases. For
example, the Padded Bruck algorithm is 32.52% faster than
MPI_Alltoallv at 256 bytes with 512 processes.

(a) N = 32 bytes (b) N = 64 bytes
Figure: Weak scaling

In a weak-scaling experiment on all-to-all communication, the
workload increased by 4 times with the doubling of processes.
Therefore, we saw an increase in execution time with increasing
process counts.
For each experiment, we fixed the maximum data-block size, and
varied the number of processes from 128 to 8,192.
We observe that for these data-block sizes, Padded Bruck
outperforms MPI_Alltoallv by up to 8,192 processes. For example,
we observed a 73.95% improvement in the performance of 8,192
processes.

1

2

3

4

5

7

Figure: Performance Model

The performance model can
be used to answer questions
such as, with P = 300 and N
= 400, should we use the
Padded Bruck, or Cray’s
MPI_Alltoallv?

We attempt to answer this problem by identifying a bounded space
of N (maximum size of data-block), P (number of processes) pairs
for which the scheme is expected.

Performance Model 6

8

