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Abstract—The exploration of maximal quasi-cliques (MQC)
within graphs is a computationally intensive problem (NP-
hard) with wide-ranging applications in social network analysis,
bioinformatics, and network security. The massive parallelism
in graphics processing units (GPUs) is well suited for solving
maximal quasi-cliques mining. However, it is a challenge to
parallelize the quasi-clique algorithm on the GPU due to (i) the
redesign of 6 pruning rules by utilizing a GPU-aware data
structure following coalesced memory access, (ii) the enormous
memory requirement of current approaches, and (iii) the drastic
load imbalance among different tasks and the efficient utilization
of threads and blocks. In this paper, we propose cuQC, the first
GPU-accelerated approach designed to efficiently mine MQC,
leveraging the parallel processing capabilities of modern GPUs.
The cornerstone of our approach is developing an innovative data
structure optimized for GPU memory hierarchy, facilitating rapid
access and manipulation of graph data. Our experimental eval-
uation demonstrates the efficacy of our approach by comparing
the execution time and graph size that can be handled against
the state-of-the-art CPU implementations. Our source code is
released at https://github.com/Mike12041204/cuQC.

Index Terms—Graph Mining, Parallel Computing, CUDA

I. INTRODUCTION

The discovery of dense subgraphs from one big graph has
attracted increasing attention. One notable dense structure is γ-
quasi-clique, which is a natural generalization of a clique that
is useful in mining various networks [1]. Specifically, given
a degree threshold γ and an graph G, a γ-quasi-clique is a
subgraph of G, denoted by g = (Vg, Eg), where each vertex
connects to at least ⌈γ · (|Vg|−1)⌉ other vertices in g [2], [3].

Maximal quasi-cliques (MQC) are critical in graph analysis.
A MQC is a specific type of γ-quasi-clique that cannot be
extended further by adding more vertices from the graph while
maintaining its density threshold γ. Enumerating all MQCs
within a graph that meet or exceed a specified minimum vertex
count threshold τsize is a significant computational challenge.

MQC mining is extensively applied in a variety of domains,
such as identifying functional modules or protein complexes in
biological networks [4], [5], uncovering communities within
social networks [6], [7], identifying spam/phishing email
sources [8], [9].
Challenges and Existing Methods. The problem of finding
all MQCs in a graph is NP-Hard [10], [11]. Even determining
whether a given quasi-clique is maximal is already NP-hard.
This high computational complexity arises from the need to
explore potentially vast numbers of vertex subsets to identify
those that satisfy the quasi-clique criteria. This becomes in-

creasingly challenging as graphs can be extremely large in
real-world applications.

Several algorithms have been proposed for mining MQC,
including Crochet [12], [13], Cocain [14], and Quick [3].
These algorithms generally use a depth-first order to explore
the search space (i.e., the set of all possible vertex sets),
incorporating pruning techniques that eliminate vertices if they
cannot possibly form a quasi-clique satisfying the density
criteria. Despite sophisticated pruning techniques, these state-
of-the-art algorithms [3], [12], [14] are unable to scale to large
datasets. For example, Quick [3] can only handle graphs with
thousands of vertices. This limitation leads quasi-clique min-
ing research to focus on developing heuristic algorithms that
can provide practical solutions under specific conditions [10].

Since MQC mining involves exploring numerous combina-
tions of vertices and edges, following the divide and conquer
paradigm, the problem of mining a big graph can be parti-
tioned into tasks that mine smaller subgraphs concurrently.
Owing to the massive parallel processing capabilities, high
bandwidth, and low power requirements, GPUs are well suited
for solving the MQC mining problem in big graphs, where the
sheer volume of data and the number of potential subgraphs to
analyze can be overwhelming for traditional CPUs. However,
achieving high performance for mining MQCs on GPUs
presents several challenges:

• Irregular Memory Access Patterns: Operations like
diameter-based pruning (see Section II), and vertex de-
gree updates, require intersecting vertex and neighbor
sets. Since neighbors may not reside in contiguous mem-
ory, these intersections involve irregular, non-sequential
memory access—making them the program’s primary
performance bottleneck.

• Memory Limitations: GPUs have limited onboard mem-
ory, which can pose a significant constraint when dealing
with big graphs. Besides, effectively managing the GPU’s
different memory types—global, shared, and registers—
is challenging yet crucial for performance optimization,
given their varying sizes, speeds, and access patterns.

• Highly Imbalanced Workload: The node number in each
subgraph and each node’s degree can vary significantly,
causing a workload imbalance. Addressing these im-
balances requires multi-level solutions, spanning warps,
thread blocks, and grids, further complicating the issue.

Our contributions are summarized below:

• We propose a high-throughput MQC algorithm designed
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Fig. 1. An Illustrative Graph

for parallel execution, incorporating various pruning
strategies optimized for the GPU architecture.

• We introduce novel task data structures to facilitate highly
concurrent memory accesses. A dynamic task scheduling
approach and a warp-level intersection technique ensure
balanced workload distribution. A task cache mechanism
has been devised to control the tasks spawning rate,
ensuring memory utilization remains bounded.

• We employ optimization techniques to amplify effective-
ness on GPU, including a hybrid CPU-GPU approach,
a shared memory buffer, and a single-pass expansion
procedure.

• We developed a distributed memory version of the algo-
rithm that leverages multiple GPUs, enabling the handling
of larger graphs at enhanced processing speeds.

• We compare the above algorithms against the state-of-the-
art approaches comprehensively, using 21 public graph
datasets of various characteristics.

II. PRELIMINARIES

A. Definitions

Graph Notations. We consider an undirected graph G =
(V,E), where V (resp. E) is the set of vertices (resp. edges).
We denote the vertex set as V (G). Given S ⊆ V , we use
G(S) to denote the subgraph of a graph G induced by S,
which includes a subset of the vertices of V (S) together with
any edges whose endpoints are all in this subset. |S| is the
number of vertices in S.

Given v ∈ G, N(v) denotes the set of neighbors of v in V .
We further define d(v) = |N(v)| as the degree of v in G. Given
a vertex subset V ′ ⊆ V , we define NV ′(v) = {u | (u, v) ∈
E, u ∈ V ′}, i.e., NV ′(v) is the set of v’s neighbors inside V ′,
and we also define dV ′(v) = |NV ′(v)|.
Problem Definition. Next, we formally define our problem.

Definition 1 (γ-quasi-clique): A graph G = (V,E) is a γ-
quasi-clique (0 < γ ≤ 1) if G is connected, and for every
vertex v ∈ V , its degree d(v) ≥ ⌈γ · (|V | − 1)⌉.

Definition 2 (Maximal γ-quasi-clique): A γ-quasi-clique
G(S) is maximal if and only if there is no other γ-quasi-clique
G(S′) containing G(S), i.e., S ⊂ S′.

To illustrate using Fig. 1, consider S1 = {va, vb, vc, vd}
(i.e., vertices in red) and S2 = S1 ∪ ve. If we set γ = 0.6,
then both S1 and S2 are γ-quasi-cliques: every vertex in S1 has
at least 2 neighbors in G(S1) among the other 3 vertices (and
2/3 > 0.6), while every vertex in S2 has at least 3 neighbors
in G(S2) among the other 4 vertices (and 3/4 > 0.6). Also,
since S1 ⊂ S2, G(S1) is not a maximal γ-quasi-clique. But
graph G, as a whole, is not a 0.6-quasi-clique as vf only has 2
neighbors among the other 5 vertices (2/5 < 0.6). If a graph is

a γ-quasi-clique, its subgraphs usually become uninteresting,
so we only mine maximal γ-quasi-cliques in this paper.

Small γ-quasi-cliques are also trivial and not interesting.
For example, a single vertex or an edge with two end-vertices
are quasi-cliques for any γ. In the literature of dense subgraph
mining, researchers usually only strive to find large subgraphs.
These state-of-the-art algorithms [2], [3] used the minimum
size threshold τsize to filter small quasi-cliques.

Definition 3 (Problem Statement): Given a graph G =
(V,E), a minimum degree threshold γ ∈ (0, 1] and a minimum
size threshold τsize, we aim to find all the vertex sets S
such that G(S) is a maximal γ-quasi-clique of G, and that
|S| ≥ τsize.

For a smaller value of γ, there exist numerous γ-quasi-
cliques, yet the majority of them are of small size and not
cohesive. γ-quasi-clique follow the property that for γ ≥ 0.5,
the diameter of a γ-quasi-clique is at most 2 [12]. In previous
studies [2], [3], [13], it was a convention to set the γ ≥ 0.5,
although it is also possible to calculate the diameter’s limit
when γ < 0.5 using the Theorem 1 in [12]. This property can
be used to remove vertices early from the candidate set that
are not 2-hops away from the vertices already in the result
set. Following [2], [3], [13], we focus on those γ-quasi-clique
with γ ≥ 0.5 only in this paper.

B. GPU Architecture

The nature of MQC mining involves exploring large num-
bers of potential subgraphs, which can be handled in parallel.
GPUs are ideal for iterative and data-intensive tasks involved
in MQC mining.
Streaming Processors. In GPU architecture, 32 threads form a
warp, executing instructions uniformly. In particular, the GPU
executes one warp of threads in a Single Instruction Multiple
Data (SIMD) fashion. Warps compose a thread block assigned
to a streaming multiprocessor (SM) equipped with execution
units, L1 cache/shared memory, and registers. A GPU contains
several SMs, and each SM contains hundreds of CUDA cores.
GPU Memory Architecture. Registers are the fastest in the
GPU memory hierarchy and are allocated per thread. Threads
in a warp can efficiently swap data using warp-level primitives
that utilize registers. A shared L1 cache/memory is accessible
to threads within the same block and is programmable but with
limited space. It is best to keep elements shared by the thread
block in shared memory and thread-local data in registers.
The entire GPU uses a shared L2 cache, with global memory
atop it, which has the slowest access rate but is accessible by
all threads. GPU threads cannot directly access CPU memory,
emphasizing the importance of CPU-GPU data movement and
memory management. Maximizing data reuse on the GPU for
tasks like MQC mining is a significant challenge, but efficiency
improves if all necessary data for threads in a warp is obtained
in a single memory transaction. This pattern, called coalesced
memory access, occurs when all threads in the warp access
consecutive memory addresses
CUDA programming. CUDA (Compute Unified Device
Architecture) is a parallel computing platform and pro-
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gramming model developed by NVIDIA for general com-
puting on its GPUs. A kernel function launched by
the GPU is specified in the form kernel function<<<
BLK NUM,BLK DIM >>>, where BLK NUM is the
number of thread blocks and BLK DIM is the number of
threads in each thread block. The GPU allows multiple threads
to execute the same code specified by the body of the kernel
function, but on different data. This data parallelism is realized
because each thread has access to the following built-in
variables in CUDA:

• blockIdx.x: the index of a block;
• blockDim.x: the number of threads in each block, aka.

the block dimension, as specified by BLK DIM;
• threadIdx.x: the thread index within a block;

In this paper, we generalize those built-in variables as below.
• For a particular thread, its warp ID in the block:

WARP ID = threadIdx.x / 32
• The ID of a thread in the warp:

LANE ID = threadIdx.x % 32

III. RELATED WORK

A. The State-of-the-art Serial Algorithm

Existing research consistently utilizes a branch-and-bound
(BB) strategy to enumerate MQCs. Their primary objective is
to develop efficient pruning rules that narrow search space.
The earliest BB algorithms proposed for MQC mining are
Crochet [12], [13] and Cocain [14]. Subsequently, Quick [3]
incorporated all prior pruning rules with additional new prun-
ing techniques, like upper-bound and lower-bound pruning.

We will take Quick as an example to provide a brief
introduction to the BB algorithm. The giant search space of
a graph G = (V,E), i.e., V ’s power set, can be organized as
a set-enumeration tree [3]. Fig. 2 shows the set-enumeration
tree T for a graph G with four vertices {a, b, c, d} where
a < b < c < d (ordered by ID). Each tree node represents a
vertex set S, and only vertices larger than the largest vertex
in S are used to extend S. For example, in Fig. 2, node {a, c}
can be extended with d but not b as b < c; in fact, {a, b, c} is
obtained by extending {a, b} with c. It has ext(S) ⊆ (V −S)
keep those vertices that can extend S further into a γ-quasi-
clique. Many vertices cannot form a γ-quasi-clique together
with S and can thus be safely pruned from ext(S); therefore,
ext(S) is usually much smaller than (V − S).

During the recursive branching process, Quick applies two
types of pruning techniques, namely Type I pruning rules and
Type II pruning rules. Type I pruning rules are conducted
on ext(S) and aim to refine ext(S) by removing those
vertices that satisfy certain conditions; Type II pruning rules

are conducted on S and aim to prune those branches where
vertices in S satisfy certain conditions. The rationale is that if
a vertex v satisfies certain conditions, each MQC covered by
this branch should not include this vertex. Thus, we can either
remove v from ext(S) for this branch, i.e., Type I pruning
rules apply (if v ∈ ext(S)), or prune the entire branch, i.e.,
Type II pruning rules apply (if v ∈ S). For simplicity, we omit
the details of these pruning techniques and refer to [2].

B. Parallel Solution

Quick [3] was only tested on small graphs: one with 4,932
vertices and 17,201 edges, and the other with 1,846 vertices
and 5,929 edges. To scale to big graphs, parallel comput-
ing techniques have been widely used to solve the graph
mining problem. Several subgraph-centric systems have been
proposed for graph mining problems, including NScale [15],
Arabesque [16], G-Miner [17] and T-thinker [18].

For example, building upon the parallel graph mining
system T-thinker [18], Quick+ [2] has been developed to
address the problem of mining maximal cliques. It recursively
partitions the search tree in Fig. 2 into multiple subtrees
via branching. Let us denote TS as the subtree of the set-
enumeration tree T rooted at a node with set S. Then, TS

represents a search space for all possible γ-quasi-cliques that
contain all vertices in S. In other words, let Q be a γ-quasi-
clique found by TS , then Q ⊇ S. Note that the mining of TS

can be recursively decomposed into the mining of subtrees
rooted in the children of node S in TS , denoted by S′ ⊃ S.
Since ext(S′) ⊂ ext(S), the subgraph induced by nodes of a
child task ⟨S′, ext(S′)⟩ is smaller.

Despite these advancements in parallel CPU systems, GPU-
based solutions for MQC mining remain unexplored. This pa-
per introduces the first GPU-accelerated approach to confront
this challenge.

IV. DESIGN OF CUQC

A. Overview and Challenges

Task Based Design. Our algorithm follows the branch-and-
bound algorithm framework of Quick+ [2] as introduced
in Section III-A. We partition the set-enumeration tree and
each subtree is encapsulated as a task, presented as a pair
⟨S, ext(S)⟩. Thus, every task can be accessed independently,
enabling parallelism that was not possible in Quick’s [3]
recursive approach. Note that in Fig. 3, for simplicity, only
the vertices in S are used to represent the tasks. In each level
of the enumeration tree, tasks are stored consecutively in a
TaskList and differentiated using various highlights in Fig. 3.

The first challenge is to determine the proper smallest
computing unit for parallelism. In the parallel CPU program,
Quick+ on T-thinker [18], the computing unit is a CPU thread.
On the GPU, a warp consisting of 32 threads is a more suitable
choice as it facilitates coalesced memory access of adjacency
lists. The majority of operations in an MQC mining task
involve the examination of vertex sets or the intersection of
adjacency lists (to be described in Section IV-C). As shown
in Fig. 3, we assign each warp to handle one task (which
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corresponds to a node in the set-enumeration tree shown in
Fig. 2). Every thread in the warp runs the related operations in
parallel, such as updating the degree for all v’s neighbors when
moving v from candidate set ext(S) to S. This representation
and generation of numerous independent warp-oriented tasks
allows for effective utilization of the GPU.
B. Data Structure

Graph Data Structure. We store the graph G = (V,E) in
the global memory compactly using a compressed sparse row
(CSR) format [19], [20]. Please refer to Figure 2 in [19] as an
example. Our graph data structure includes 4 arrays:

• OneHopAdj (resp. TwoHopAdj): the concatenation of the
one-hop (resp. two-hop) adjacency lists;

• OneHopOffset (resp. TwoHopOffset): the start location
of the neighbor list of vertex i in OneHopAdj (resp.
TwoHopAdj);

Task Data Structure. The real information of each task is
prepared in CSR format (as shown in Fig. 4). We keep these
tasks in the global memory compactly as 6 arrays:

• taskOffset: taskOffset[i] represent the start location of
task i in the vertices array;

• vertices: all vertices in ⟨S, ext(S)⟩ of each task;
• label: for vertex vertices[i], label[i] identifies its corre-

sponding status. 0 means vertices[i] is in S, 1 means it
is in ext(S), 2 means being covered (see IV-G), and −1
means being pruned;

• indeg: the number of neighbors that vertices[i] has in S,
i.e. indeg[i] = |NS(vertices[i])|;

• exdeg: the number of neighbors that vertices[i] has in
ext(S), i.e. exdeg[i] = |Next(S)(vertices[i])|;

• lvl2adj: lvl2adj[i] = number vertices in ext(S) which are
within 2-hops from vertices[i];

As shown in Fig. 4, suppose we have 3 tasks from a
fully connected graph {a,b,c,d}. T1 has ⟨S1, ext(S1)⟩ =
{(a, b), (c, d)}; T2 has ⟨S2, ext(S2)⟩ = {(b, c), (d)}; T3 has
⟨S3, ext(S3)⟩ = {(c, d), ∅}. Then, these 3 tasks’ required
information will be represented as the 6 arrays in Fig. 4. This
array-based data structure is ideal as direct index access allows
each warp to read its tasks in parallel.
C. GPU Algorithm

Host Program. The host program is presented in Algorithm 1.
Line 1 loads the input graph into the main memory utilizing
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the CSR structure. Line 2 then executes an initial round of
cover pruning (see Section IV-G). The covered vertices are
exempt from spawning in Line 3 (status being marked in the
label array). This ensures each vertex initiates a task following
the specific data structure in Fig. 4.

Given that tasks correspond to subtrees spawned from the
nodes in the set-enumeration tree as Fig. 2, it implied that the
number of tasks is quite small initially. Consequently, it is not
optimal to offload these preliminary tasks to the GPU, as their
limited quantity would not fully utilize the GPU’s computing
power, leaving most of the GPU cores idle. Therefore we
have variable cpu round initialized to 0 in Line 4 to track the
number of rounds executed on the CPU. With a hybrid CPU-
GPU implementation strategy, the tasks will be transitioned to
GPU processing only after exceeding the number of rounds
specified by hyperparameter τcpu. Lines 5–8 execute the CPU
expand(t) function as Quick+ introduced in Section III-A.

From Line 9 onwards, the program shifts to GPU execution.
Line 9–10 prepare the required task data structures as Fig. 4
on GPU and copy the tasks from the CPU main memory to
the GPU memory. As shown in Fig. 5 the task are stored
in TaskList and TaskBuffer (an auxiliary container to control
task spawning speed, cf. Section IV-D). In Lines 11–16, each
task is processed by one warp until both the TaskList and
TaskBuffer on GPU are empty. Notably, Line 12 invokes the
gpu expand(t) kernel function, where each warp expands an
individual task into new tasks, applying pruning techniques
to narrow down the search space for each new task. These
new tasks are temporarily stored within the WarpTaskBuffer
(see Fig. 5), to avoid the inefficiency of duplicated two-pass
computations (detailed in Section IV-D). Upon completion of a
round, once all tasks have been written to the WarpTaskBuffer
by warps, Line 13 triggers the transfer(). This function trans-
fers the newly expanded tasks back to the TaskList, or to
the TaskBuffer if capacity constraints necessitate. Line 14
ensures the replenishment of tasks from TaskBuffer to TaskList
to maintain warp occupancy. Throughout the execution of
gpu expand(t), all valid quasi-cliques are stored in the GPU
global memory in ResultList. Line 16 transfers results from
ResultList to the host.
Kernel Program. Algorithm 2 shows an expand kernel,
where the tasks are distributed to warps for further expansion
and pruning. Initially, to read tasks from TaskList in paral-
lel by warps on GPU, we maintain a cumulative counter,
global count, to track the next task to be processed. In
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Lines 1–2, each warp localizes the next task in TaskList and
increments the global count by one. Lines 3–23 repeatedly
expand current task, employ pruning strategies to reduce
search space, verify the validity, and retrieve the next tasks.

Specifically, Lines 5–8 perform the lookahead pruning to
verify if the entire S∪ext(S) collectively satisfies the criteria
for a γ-quasi-clique. Subsequently, Line 11 move one vertex v
from the candidate set ext(S) to S. Given the constraint γ ≥
0.5, all the vertices must be within 2-hops to form a γ-quasi-
clique (see Section II). Line 12 removes vertices from the
candidate set that are not within 2-hops of v. To fully leverage
the high-speed shared memory, the new task with ⟨S′, ext(S′)⟩
will be stored in shared memory if |S′| < τshared, or stored
in global memory. τshared is a hyperparameter defined by
users according to their GPU hardware. Lines 13–15 engage in
pruning the new tasks, employing CUDA warp-level primitives
to implement the specified pruning criteria. The pruning rules
are classified into two categories: Type I aims to eliminate
unpromising vertices from the candidate set, whereas Type II
can terminate exploration on the current task as demonstrated
in Lines 16–17 and detailed within Section IV-G. Lines 18–
20 store new tasks in WarpTaskBuffer if they can be expanded
further and check if the current S′ is a γ-quasi-clique. Once
all the candidates in this task have been explored, Lines 21–22
will localize the next task.

Another kernel function transfer() only transfers tasks and
will be introduced in the Single-Pass Expansion Approach.

D. Approach

Task Flush and Refill. To manage memory usage, the system
control the number of tasks to be expanded concurrently. If
all available tasks are expanded at every level in the set-
enumeration tree, memory usage may explode on big graphs.
But, in terms of efficiency, maintaining a sufficient number
of tasks in TaskList is also crucial to keep all warps busy.
To control the task expansion rate, we introduce an expansion
threshold τexpand, which specifies the number of tasks planned
for each level. During expansion, if the number of generated
tasks exceeds the τexpand, we flush the excess tasks from
the WarpTaskBuffer to the TaskBuffer (see Fig. 5). Before
expanding, if the number of tasks in TaskList is less than
the τexpand, we replenish it by transferring tasks from the

Algorithm 1 GPU-Based MQC Algorithm: Host Program
1: Load Graph G into the host memory
2: u← argmaxv∈V deg(v) ▷ Select highest-degree vertex
3: Spawn tasks from V −N(u) and save in task list T
4: cpu round← 0
5: while cpu round > τcpu do
6: for each task t ∈ T do
7: expand(t)

8: cpu round← cpu round+ 1

9: Allocate TaskList in device memory
10: Copy task list T from host to the device TaskList
11: while TaskList ̸= ∅ and TaskBuffer ̸= ∅ do
12: Launch kernel gpu expand(t)
13: Launch kernel transfer()
14: if |TaskList| < τexpand and TaskBuffer ̸= ∅ then
15: Refill from TaskBuffer to TaskList

16: Save ResultList in file

Algorithm 2 Kernel Function gpu_expand()

1: if LANE ID = 0 then
2: loc← atomicAdd(global count, 1)
3: repeat
4: WarpTask ← TaskList[loc]
5: if G(S ∪ ext(S)) is a γ-quasi-clique then
6: Append G(S ∪ ext(S)) to ResultList
7: if LANE ID = 0 then
8: loc← atomicAdd(global count, 1)
9: continue

10: for each v in ext(S) do
11: S′ ← S ∪ v, ext(S)← ext(S)− v
12: ext(S′)← ext(S)∩ {v’s 2-hop-neighbors}
13: Warp-Level Degree-Based Pruning
14: Warp-Level Lower/Upper-Bound Based Pruning
15: Warp-Level Critical Vertex Pruning
16: if any Type II pruning on S′ is triggered then
17: continue
18: Append new task T⟨S′,ext(S′)⟩ to WarpTaskBuffer
19: if S′ is a γ-quasi-clique then
20: Append S′ to ResultList

21: if LANE ID = 0 then
22: loc← atomicAdd(global count, 1)
23: until loc ≥ |TaskList|

TaskBuffer. Table IV in Section VI illustrates that τexpand
significantly impacts both the speed and memory consumption.
Hybrid CPU-GPU Approach. The size of tasks generated at
lower levels of expansion is generally large, as less pruning
has been done to each task. There will be a small amount of
tasks, but each one will be exceptionally intensive. Directly
running this small amount of heavy tasks on the GPU will
introduce two issues: (1) workload imbalance, where most
warps remain idle while a few are busy mining those heavy
tasks (as discussed in Section IV-C), and (2) a significant
increase in space demands due to these large early-stage tasks



generating a huge amount of sub-tasks.
To address this problem, we consider running the first few

levels on the CPU before moving to the GPU to minimize the
WarpTaskBuffer size required by each warp. As mentioned
in Section IV-C, users can control the transition point from
CPU to GPU processing by adjusting the τcpu hyperparameter.
We found switching after the second level gives the best
performance for most cases. The hybrid CPU-GPU approach
significantly decreases the memory required for expansion on
the GPU allowing for the program to run on larger graphs.
Single-Pass Expansion Approach. Numerous GPU-based al-
gorithms [21] take a two-pass approach when multiple threads
need to write an unknown amount of heterogeneous output in
parallel. The underlying logic of this two-pass method involves
determining the size of each element during the first pass,
followed by parallel output writing in the second pass. This
principle is particularly applicable to parallel MQC mining. To
get the writing location, it is essential to obtain the number
and size of new tasks by executing a preliminary expand pass.
Subsequently, a second expand pass is necessary to generate
and store these new tasks in parallel.

As shown in Fig. 5, we developed a novel one-pass
strategy utilizing an exclusive scan operation facilitated by
the additional data structure WarpTaskBuffer. This structure
preallocates buffers for each warp to write their partial results
to. When the partial results generated by all warps are ready,
the second kernel transfer() is launched to transfer the data
from WarpTaskBuffer to TaskList or TaskBuffer (depending on
the capacity of TaskList). Then we run an exclusive scan to
assess the size of tasks to be recorded in the TaskList and
accurately determine the offsets. With the offsets, each warp
will use its threads to transfer the data it generated to the
TaskList or TaskBuffer in parallel as shown in Fig. 5.

The one-pass approach requires the additional calculation
and synchronization of the transfer() kernel, but we have
observed that this takes minimal time compared to the general
gpu expand() kernel call. As shown in our experiment, avoid-
ing duplicate calculations leads to significant time savings.

E. Task Scheduling Approach
In many GPU-based graph mining algorithms [21], [22],

an equal distribution of jobs across each computing unit is
implemented. However, this approach of evenly allocating
tasks to each warp leads to workload balancing issues when
mining MQC. As demonstrated in [2], the runtime of MQC
tasks varies significantly, and it is difficult to predict each
task’s runtime because of the complex pruning rules involved.

In this study, we implement a dynamic task scheduling
approach, in contrast to the traditional method of statically
allocating an equal number of tasks to each warp in advance.
Instead, warps proactively fetch new tasks from TaskList upon
completing their current ones. Our experiments indicate that
this dynamic method significantly enhances performance.

F. Vertex Set in Shared Memory
Accessing shared memory, though size-limited, can be

approximately 10 to 100 times faster than accessing global

memory. To fully utilize the shared memory, we allocate a
buffer of size τshared called SharedVertices for each warp.
During task expansion, newly generated tasks smaller than
τshared will be stored in SharedVertices.

G. Pruning Rules

Our program utilizes the 6 pruning rules from Quick [3] to
greatly reduce the search space of a graph.

• Diameter Pruning: given γ ≥ 0.5, each time a vertex is
added to the S from ext(S), all vertices not within 2
hops of the new vertex can be eliminated.

• Degree-Based Pruning: it considers the minimum number
of neighbors each vertex must have in the clique and
whether that requirement is still achievable. This pruning
rule applies whenever the degrees of a vertex change.

• Cover Pruning: one vertex may have a strong connection
with a group of other vertices, and they cannot form an
MQC without including this key vertex. This vertex is
referred to as a cover vertex in Quick [3], and the group
of vertices it covers can be excluded from expansion.

• Lookahead Pruning: at the beginning of the expansion,
we check whether the entire set forms a quasi-clique.

• Upper-lower Bound Pruning: it calculates the upper and
lower bound on the vertices that can be added to S while
maintaining the potential to form an MQC. These refined
bounds enable further degree-based pruning.

• Critical Vertex Pruning: A critical vertex in S requires all
neighbors in the candidate set to be included to form an
MQC. We identify these vertices and add their neighbors.

More details of pruning rules can be found in Quick [3].
These pruning rules all complement each other and are per-
formed repeatedly. Without all these rules, analyzing larger
graphs is impossible.
Example: Degree-Based Pruning. Adapting these prun-
ing techniques on GPU necessitated innovative memory-
management strategies. Due to space limitations, we cannot
provide the GPU implementation details for each pruning tech-
nique. Instead, we use degree-based pruning as an example.

Degree-based pruning occurs during expansion after vertex
v is added to S, removing all vertices in ext(S) not within
2-hops of v. The indeg and exdeg (as in Fig. 4) are updated
after removal. Vertices that no longer meet the degree criteria
are removed, triggering further degree updates and pruning
until no vertices can be removed. To perform this efficiently,
we initialize auxiliary structures as shown in Fig. 6: Remain-
ingVertices (stores unpruned vertices) and RemovedVertices
(stores pruned vertices). Degree updates are performed via an
intersection after vertex removal by either:

∀v ∈ RemainingV ertices,

exdeg(v)← exdeg(v)− |NG(v) ∩RemovedV ertices|
or
exdeg(v)← |NG(v) ∩RemainingV ertices|

Kernel profiling shows the intersection is the most com-
putationally intensive part of the program due to the large



component sizes. Each thread handles the degree calculation
above for one vertex in the task. We optimize the intersection
by dynamically selecting the most efficient method above
based on the sizes of RemainingVertices and RemovedVertices,
favoring the smaller set for faster intersection. Additionally, we
preprocess and sort the adjacency list, enabling binary search
for neighbors in the remaining or removed sets.
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a g j fb h
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…
thread-1 thread-2
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Fig. 6. Parallel Degree-Pruning on GPU

After the intersection, we obtain an updated RemainingVer-
tices (top of Fig. 6) with revised vertex degrees. Using
these, each thread applies degree-based pruning to one vertex.
Directly writing results to RemainingVertices and Removed-
Vertices risks race conditions. To avoid this, we use per-
thread buffers: ThreadRemaining and ThreadRemoved. As
indicated by the top arrows in Fig. 6, each thread writes to
its own buffers and tracks counts of remaining and removed
vertices in registers. Then an exclusive scan across the warp—
using CUDA warp-level primitives—determines each thread’s
write offset (e.g., t0, t1, t2 in Fig. 6) into RemainingVertices
and RemovedVertices. Threads then merge results from local
buffers into the global structures. This pruning loop repeats
until no more vertices can be removed.

V. DISTRIBUTED MEMORY

Real-life graphs are typically large and complex, making
a single GPU insufficient for processing. To address this,
we developed a multi-GPU version of cuQC to boost the
performance. The core concept involves redistributing tasks:
once a GPU completes its assigned tasks, it receives additional
tasks from others still in progress.
Distributed Program. The distributed program is presented
in Algorithm 3. Line 1 represents the first 10 lines of Al-
gorithm 1, which involve loading the data, performing CPU
expansion, and transferring the data to the GPU. Notably, the
distributed version still follows the hybrid CPU-GPU design.
Enough tasks will be spawned after the CPU stage to feed the
GPUs. To balance the workload between multiple GPUs, these
tasks are distributed among different GPU nodes in a strided
manner, as the early spawned tasks are likely to be larger due
to having more candidates. For example, if there are 16 tasks
with IDs ranging from 0 to 15 to be assigned among 4 GPUs,
GPU-0 receives tasks t0, t4, t8, t12, GPU-1 receives tasks t1,
t5, t9, t13, and so on.

Lines 3–8 perform the local GPU expansion of tasks until
completion. Specifically, Line 4 corresponds to lines 12–16 of
Algorithm 1, which generate the next level of tasks from the

Algorithm 3 Distributed Memory Algorithm
1: Execute lines 1-10 from Algorithm 1
2: while !all GPUs free() do
3: while TaskList ̸= ∅ and TaskBuffer ̸= ∅ do
4: Execute lines 12-16 from Algorithm 1
5: if TaskBuffer > τhelp then
6: send← send work()
7: if send then
8: Update TaskBuffer

9: broadcast free(rank)
10: receive← receive work()
11: if receive then
12: Update TaskBuffer
13: Refill TaskBuffer to TaskList
14: broadcast received(rank)
15: Save ResultList to file

current level. Unlike the previous algorithm, at the end of each
level, Line 5 checks if TaskBuffer exceeds τhelp. If so, Line 6
invokes the send work() method, which attempts to send idle
tasks to another process and returns whether it is successful.
If it is successful, τsend of tasks from TaskBuffer will be
sent to the receiving process’s TaskBuffer. The hyperparameter
τhelp and τsend ensure tasks are sent only when their volume
justifies the network communication overhead, which is set
by the user based on network speed. Line 7 verifies sending
success, and Line 8 updates TaskBuffer size accordingly.

Continuing from Line 9, all local tasks have been completed,
and the focus shifts to obtaining tasks from a process that still
has tasks. Initially, a broadcast message is sent to all processes,
indicating that this process is now free. Line 10 invokes the
receive work() method, which attempts to receive work from
another process and returns a success status. If tasks are
received successfully, Lines 12–14 update the TaskBuffer, fill
TaskList from TaskBuffer, and broadcast to all other processes
that this process is no longer free. The communication between
multi-GPUs is discussed as follows.

Message Passing. To ensure that one node will send its
idle tasks to only one other node, we have designed the
communication to follow a “Three-way Handshake” approach.
As shown in Fig. 7, when a process becomes free, it broadcasts
its status as f to all other processes. The free process will then
continuously check for messages from other processes. It will
wait until either all processes’ statuses become f (indicating
the entire program is finished) or one process sends an r
(indicating a busy node is requesting help). The free process
will respond to the busy node with a c message, asking for
confirmation. This confirmation is necessary because, due to
the asynchronous design, the requesting process might have
completed all its tasks by the time the confirmation message
arrives. If the busy process still has tasks, it will reply with
C to one idle process, initiating the transfer. When the idle
process has received the work, it will broadcast t (taken work),
declaring that it is no longer free. If multiple free processes
have sent a c, the busy process will send a D (decline) to



the others, indicating that it is declining their help, prompting
them to continue looking for other requesting processes.

This system is designed to be asynchronous, with all pro-
cesses being non-blocking except those involved in the actual
sending and receiving of tasks. This blocking communication
is highlighted in red in Fig. 7. Messages containing vertex
data are efficiently transmitted using MPI Datatype in a single
transaction, avoiding the need to send different variables
in multiple messages. These designs ensure maximal GPU
utilization and guarantee excellent scalability as the number of
GPUs increases, as demonstrated in the following experiments.
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Fig. 7. Distributed GPUs Communication

VI. EXPERIMENTS

In this section, we conduct comprehensive experiments to
evaluate the performance of cuQC.

A. Experimental Setup

Platform. We evaluate our GPU implementations on an
NVIDIA A100 GPU [23] with 108 streaming multiprocessors
(SMs) and 80 GB of global memory. For the comparison, we
run the other CPU-based MQC algorithm T-thinker on a Linux
server with AMD EPYC 7763 64-Core Processor @ 2.45GHz
CPU cores.
Datasets. We comprehensively evaluate our cuQC algorithm
and baselines on 21 public graph datasets with varying sizes
and densities, from SNAP [24], Network Repository [25], the
GraphChallenge [26], and NCBI [27]. As shown in Table I,
the datasets are listed in ascending order of the number of
vertices. These datasets span numerous categories, including
(1) social networks such as Ego-Facebook, LastFM, FB-Pages,
Brightkite, Gowalla, YouTube, Hyves, Flixster, Livejournal,
and Konect; (2) collaboration networks such as Ca-GrQc,
HepPh, AstroPh, CondMat, Citeseer, DBLP; (3) biological
network CX GSE1730; (4) email communication network
Enron; (5) a co-purchasing network Amazon; (6) an internet
topology Skitter; and (7) a protein Kmer.

TABLE I
GRAPH DATASETS

Max Degree|E| / |V||E||V|Dataset
1975.115,096998CX_GSE1730
1,04521.8588,2344,039Ego-Facebook
812.7714,4965,242Ca-GrQc
2163.6527,8067,624LastFM
4919.87118,52112,008HepPh
50410.55198,11018,772AstroPh
2804.0493,49723,133CondMat
1,3835.01183,83136,692Enron
1,46916.22819,30650,516FB-Pages
1,1343.68214,07858,228Brightkite
14,7304.83950,327196,591Gowalla
1,3723.58814,134227,320Citeseer
3433.311,049,866317,080DBLP
5492.76925,872334,863Amazon
28,7542.632,987,6241,134,890YouTube
31,8831.982,777,4191,402,673Hyves
35,4556.5411,095,2981,696,415Skitter
1,4743.147,918,8012,523,387Flixster
2,6516.9327,933,0624,033,138Livejournal
4,9601.5692,522,01459,216,212Konect
351.0269,389,28167,716,231Kmer

Compared Algorithms. Since there is no existing GPU-
accelerated algorithm for MQC, we compare cuQC to
CPU-oriented algorithms, including the recent serial version
Quick [3], and the cutting-edge parallel MQC algorithm, i.e.,
parallel Quick+ on T-thinker [18]. By default, cuQC sets the
values for τcpu (rounds ran on CPU) to 2 and uses dynamic
scheduling. We also implement other variants to evaluate the
techniques proposed in this paper, which will be detailed in
the corresponding experiments.

B. Overall Evaluation

We configure a kernel grid to have 216 thread blocks,
with each block comprising 1,024 threads. Table II compares
the running times of the serial Quick, parallel CPU-based
T-thinker, and our GPU-based program cuQC on real-world
datasets. The symbol “-” indicates that the program could
not complete execution within 24 hours. The experimental
results demonstrate that our cuQC can achieve a remarkable
3,992x speedup compared to the serial Quick algorithm when
evaluated on the AstroPh dataset. This exceptional acceleration
shows the significant performance gains attainable by cuQC
through its effective utilization of the massively parallel com-
puting capabilities of the GPU.

Our cuQC achieve an impressive 179x speedup over the
parallel CPU-based T-thinker system (see Table II). This accel-
eration is significantly observed in dense graphs, exemplified
by dataset Ego-Facebook with an average degree of 21.85
and AstroPh with an average degree of 10.55. During the
exploration of the set-enumeration tree, these dense graphs
spawn a multitude of computationally intensive tasks that
cannot be easily pruned. Our GPU system is well-designed
for efficiently performing the pruning calculations associated
with these demanding tasks, enabling cuQC to outperform
both CPU-based competitors by orders of magnitude on dense
graph datasets. Additionally, T-thinker flushes intermediate
tasks to disk to maintain memory bounded. After two hours
run on the AstroPh and Ego-Facebook datasets, we had to
terminate the T-thinker system, as generated files were about
to fill our 2 TB disk.

Due to space limitations, we are unable to present experi-
ments for all datasets. Instead, we represent the datasets by



TABLE II
OVERALL EVALUATION

cuQC (ms)T-thinker (ms)Quick (ms)#{MQC} 𝜏𝒔𝒊𝒛𝒆Dataset
1202351911,602300.9CX_GSE1730

230,940--21030.95Ego-Facebook
19924236643,399100.8Ca-GrQc
1995,4657,40523,319200.75LastFM
228--5710.95HepPh
22740,754906,24554,772540.8AstroPh
1996258354,396150.8CondMat
3,28412,813127,926200230.9Enron
440,1642,174,8481,894,4571724.9FB-Pages
37425,319500,6371,361500.9Brightkite
14,10865,0371,073,25311300.9Gowalla
5951,494-26,312600.9Citeseer
15816601,5402730.9DBLP
3771,2301,02813120.5Amazon

716,804898,070-274180.9YouTube
13,846109,564190,6551,480220.9Hyves
73,875--96530.95Skitter
53,234--4950.9Flixster
63,213--56,057196.95Livejournal

13,568,398--25,39215.5Konect
28,31148,21549,75263100.5Kmer

γ

size. For small graphs (|V | < 100, 000), we chose Ego-
Facebook. For medium graphs (100, 000 ≤ |V | ≤ 1, 000, 000),
we selected Gowalla. For large graphs (|V | > 1, 000, 000), we
chose Skitter. These graphs were chosen for their high |V |/|E|
ratios, ensuring they would present non-trivial challenges.
Some experiments cannot use these representative data, as
explained in the corresponding sections.

C. Effect of Optimizations
Static Scheduling v.s. Dynamic Scheduling. To analyze the
impact of task scheduling strategies from Section IV, we
designed two variants of cuQC: a static scheduling version
and a dynamic scheduling version. Table III illustrates that the
dynamic scheduling strategy significantly improve the perfor-
mance, as it promotes workload balancing by assigning the
next available task to an idle warp on the GPU immediately,
taking full advantage of the GPU’s computational resources.

TABLE III
TASK SCHEDULING

SpeedupDynamic (ms)Static (ms)Dataset
1.04243,744254,173Ego-Facebook

1.2414,29317,770Gowalla

1.0774,51779.897Skitter

D. Hyperparameter Analysis
Our system has a configurable setting τexpand, which ap-

proximately determines the number of tasks handled by each
warp per round. This setting indirectly determines the size
of the WarpTaskBuffer and TaskBuffer containers. As shown
in Table IV, this hyperparameter impacts both runtime and
memory usage. For instance, by increasing τexpand from 6, 912
(Warp#/Block×BlockNum) to 691, 200 on Ego-Facebook,
the runtime decreases from 582,672 ms to 243,529 ms, while
the memory usage increases from 2,003 MB to 18,261 MB.

Increasing τexpand reduces time by activating more tasks
in each level kernel call. It decreases the data transfers
frequency between the WarpTaskBuffer and TaskBuffer, and
more active tasks enhance the ability to balance workloads
using the dynamic task scheduling strategy. However, it will
also increase memory usage since more tasks will generate
sub-tasks in the same level kernel call.

We aim to run all graphs with a τexpand of 100, but for
the Youtube graph, we use a τexpand of 10 to bound memory.

This hyperparameter enhances the adaptability across different
GPUs. For GPUs with limited memory capacity, users can still
scale to big graphs by tuning the τexpand setting accordingly.
This flexibility enables our system to accommodate a wide
range of GPU configurations, facilitating efficient quasi-clique
mining on diverse hardware platforms while balancing runtime
and memory requirements.

TABLE IV
EFFECT OF EXPAND THRESHOLD

Memory (MB)Time (ms)Dataset

2,003582,6726,912

Ego-Facebook
2,313416,51513,824

4,627277,47169,120

11,327247,587345,600

18,261243,529691,200

29,97517,1736,912

Gowalla
29,97515,12513,824

29,97514,22269,120

29,98314,492345,600

29,98714,471691,200

34,849241,7156,912

Skitter
35,367183,49013,824

36,509106,35369,120

38,52375,355345,600

42,03174,636691,200

E. Ablation Study

In this experiment, we evaluate the effectiveness of the
pruning techniques on the GPU. We selected smaller graphs
for these tests because, without pruning, the search space
becomes too large to handle on larger graphs. Moreover,
diameter and degree-based pruning are fundamental to the
program and are already included in all algorithms. We
implemented a baseline mining algorithm that does not use
most pruning techniques described in Section IV. We then add
one of the pruning techniques to the baseline GPU algorithm.
Table V presents the running time of the baseline algorithm
and pruning techniques on LastFM and Condmat. These results
highlight the necessity of assembling all proposed techniques
on the GPU, as no single pruning technique exhibits consistent
effectiveness across all datasets. For instance, the lookahead
technique does not provide significant benefits on the LastFM
dataset. However, it achieves a speedup ratio of 24.67 on the
Condmat dataset. This implies that the effectiveness of the
pruning techniques is dependent on the characteristics of the
underlying datasets.

TABLE V
EFFECTIVENESS OF PRUNING TECHNIQUES ON GPU

SpeedupTime (ms)AlgorithmDataset
-4,113Baseline

LastFM
1.143,616Baseline + Lookahead
2.221,851Baseline + UpperLower
2.052,002Baseline + CriticalVertex
5.28779cuQC

-27,429Baseline

Condmat
24.671,112Baseline + Lookahead
1.0027,543Baseline + UpperLower
1.0226,802Baseline + CriticalVertex

25.831,062cuQC

F. Distributed Memory

We evaluate our distributed GPU implementation with 4
NVIDIA A100 GPUs [23] (the maximum in our cluster).
Datasets. Compared to the single-node version, the distributed
version is designed for large graphs which have sufficient work
to utilize all GPUs. We run tests on three large, high-density
datasets: Ego-Facebook, FB-Pages, and Konect [24], [25].



Evaluation. Table VI reports the scalability as we vary the
number of GPUs as 1, 2, 3, and 4. We can see that additional
machines generally improves the performance. Perfect scala-
bility is unattainable due to some parts of the program running
on the CPU and the communication overhead between GPUs.
Our results show that near-ideal scalability can be achieved
on graphs with substantial workloads. For the 4 GPU version
on the Konect graph, we achieved a speedup of 3.9 times
compared with a single node.

TABLE VI
SCALABILITY

0

50,000

100,000

150,000

200,000

250,000

300,000

1 2 3 4

Ti
m

e 
(m

s)

Number of Nodes

Ego-Facebook

0
50,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000

1 2 3 4

Ti
m

e 
(m

s)

Number of Nodes

FB-Pages

0
2,000,000
4,000,000
6,000,000
8,000,000

10,000,000
12,000,000
14,000,000
16,000,000

1 2 3 4

Ti
m

e 
(m

s)

Number of Nodes

Konect

Effect of Help Threshold. In our program, we have a config-
urable setting, τhelp, which specifies the number of remaining
tasks at which processes should begin distributing work to
other GPUs. A lower τhelp means more tasks can be balanced
to other idle GPUs from a busy one, but it also induces
more communication overhead. Note that our experiment starts
with τhelp set at 6, 912 to ensure at least one task is left for
each warp. As shown in Table VII, a τhelp of the minimum
6, 912 is ideal. This is due to the extremely fast intra-node
communication on our server, making messaging times for
these larger graphs negligible compared to computation time.

TABLE VII
EFFECT OF HELP THRESHOLD

KonectFB-PagesEgo-Facebook
Time (ms)𝜏!"#$Time (ms)𝜏!"#$Time (ms)𝜏!"#$
3,640,2316,912155,7796,912148,2016,912
3,657,24013,824156,90313,824150,67413,824
3,656,18969,120156,32969,120205,08969,120
3,642,673345,600160,851345,600205,016345,600
3,639,677691,200160,143691,200205,100691,200

VII. CONCLUSION
We have designed the first highly efficient MQC system

on the GPU and a corresponding distributed version. Mining
MQC on big graphs using the GPU faces serious challenges,
including large memory requirements, thread divergence, and
severe load imbalance. To address these problems, novel GPU-
aware data structures and optimization techniques are designed
on our cuQC. Our experiments show that cuQC significantly
outperforms traditional serial CPU solutions and is also faster
than parallel CPU solutions.
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