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ABSTRACT

Repartitioning in a parallel setting can be defined as the task of
redistributing data across processes based on a newly imposed
grid/layout. Repartitioning is a fundamental problem, with ap-
plications in domains that typically involve computation on tiles
(blocks/patches) of varying resolution, for example, while creating
multi-resolution data formats in in situ mode (such as the JPEG
format and its variants). This paper explores the performance and
tradeoffs of different ways to perform the data redistribution phase.
In particular, we explore a greedy scheme that aims to minimize data
movement while compromising on load balancing and a balanced
scheme that aims to create a balanced load across processes while
compromising on data movement. For both these schemes, we mea-
sure the impact of buffer size on MPI point-to-point communication
performance when using two different communication patterns:
a per-patch (staggered data transfer) and a per-rank (aggregated
data transfer). Our experimental study finds that the reduced data
movement of the greedy scheme leads to reduced transfer times
during redistribution. Furthermore, we conclude that the per-patch
communication pattern outperforms per-rank communication.
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1 INTRODUCTION

This paper explores the process of repartitioning, which entails the
task of redistributing existing data across the available set of pro-
cesses based on a new grid layout [12]. The process of repartitioning
can be used by any parallel code that performs computational tasks
with different data distribution requirements. In particular, it can
be used for in-situ tasks where the division of data leveraged by the
application is not in sync with the division of data needed by the
in-situ operation. For example, an image is a collection of pixels
arranged on a regular grid indexed by its global coordinate system.
An in-situ operation on the image, like compression, may be applied
only in units of a regular, well-defined extent of pixels known as a
patch. A patch is a slice- or volume-based subdivision of the image
pixels that is transformed by an in-situ operation, e.g. a patch size
of 16 x 16 pixels. Repartitioning is used to support computational
operations on patches that represent logical units of data aligned
with the algorithmic requirements of a computation. Repartition-
ing facilitates operations like wavelet convolutions [4], low-pass
filtering and image denoising [1], lossy compression [13, 16, 19],
efficient I/O [12], and other downstream computations. While repar-
titioning can be part of many different workflows, our motivation
behind studying it in detail stems from its applicability in parallel
I/O pipelines, in particular, while writing data in hierarchical format
as with JPEG [16] or IDX [12]. Both these data formats usually work
on patches of resolution 163 or 323 or 64° and therefore require
repartitioning the data domain based on that patch size.

A simple example of repartitioning can be seen in Figure 1. The
left sub-figure shows a 2D data domain of resolution 300 X 200
partitioned across 6 processes (shown by 6 different colors), where
every process works on a patch of resolution 100 X 100. The right
sub-figure shows the result after repartitioning the data domain
into patches of size 75 X 75. In this example, since the total number
of patches after repartitioning (12) is an integral multiple of the
initial number of patches (6), every process gets 2 patches after
repartitioning. However, the global domain resolution in the Y-axis
(200) is not an integral multiple of the patch size in the Y-dimension
(75), therefore a couple of processes end up having patches of
smaller sizes (brown and grey process).

Non-uniform distribution of patches can lead to an imbalance in
the work performed across processes which leads to communication
delays and idle resources as processors with less work wait on those
with more work to complete their operations before the next phase
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Figure 1: Example of repartitioning. (Left) a 2D domain of
300 x 200 divided across patches of resolution 100 X 100, (right)
the same 2D domain after repartitioning across patches of
resolution 75 X 75.

of a synchronized workflow can begin. Uniform distribution of data
to balance the workload ensures optimal forward progress of the
workflow [9]. This work explores the data movement costs needed
to maintain a balanced workload.

Applications can pursue many different approaches to distribut-
ing the new patches across the available set of processes. For exam-
ple, the scheme shown in Figure 1 follows the round-robin approach
where the newly created 12 patches are distributed to the 6 pro-
cesses in increasing patch-id order. Clearly, this scheme does not
lead to optimal load balance as both the brown and gray processes
end up with two patches of a smaller size. A load-balanced redistri-
bution scheme would instead ensure allotment of the 4 small-sized
patches to 4 different processes.

In this paper, we explore two main patch distribution approaches
using MPI point-to-point communication: (a) a greedy approach
that aims to minimize data movement across processes, and thereby
compromises on load-balancing and (b) a lowest-rank patch place-
ment approach that aims to achieve a balanced load across pro-
cesses and thus can potentially compromise data movement costs.
For both these approaches, we have two implementation strategies:
(i) per-rank data exchange which ensures only one point-to-point
data exchange between a process pair, and (ii) per-patch exchange,
where a process pair has as many point-to-point exchanges as the
total number of patches.

In brief, the contributions made by our work are:

e experimental study of the communication costs of a balanced
data placement versus greedy placement

o experimental study of the impact of per-patch data exchange
using non-contiguous MPI subarry buffer packing versus a
per-rank data exchange using contiguous buffers

o scaling study of the proposed repartitioning strategies.

2 RELATED WORK

Existing parallel I/O performance libraries like ADIOS [11] and
HDF5 [10] provide abstractions for managed file I/O across pro-
cess. These frameworks are not focused on data exchange costs
leading to the file I/O. Prior studies have explored data repartition-
ing and parallel I/O workflow performance from an application
perspective [12] and included characteristic communication and
computation operations that leverage these parallel I/O libraries
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to measure the throughput benefits of balanced patch [9] or parti-
cle [18] distribution. Particle-based workload distribution using task
run-time to balance load across processors [3, 20] also demonstrate
improved workflow performance. These studies do not isolate the
cost of data communication from the total workflow runtime and
do not explore the potential impact of large-scale data movement.

Existing benchmarks available for file I/O, like IOR [15], sup-
port platform-specific performance assessments of throughput and
can serve to isolate the storage performance in parallel I/O work-
flows. MPI communication benchmarks provide mechanisms to
explore inter-process communication costs for specific scenarios.
Benchmarks to explore overlapped communication and computa-
tion using point-to-point [7] and partitioned communication [17]
focus on specific application communication patterns and not the
timed exchange of application specific data abstractions. As with file
1/0, there are MPI benchmarks, like the Sandia [5] and ACLF [14]
benchmarks, to explore the performance of underlying network
hardware, but do not present the measures from an application
perspective portable across systems.

We orient our micro-benchmark development toward measures
of data exchange specific to repartitioned patch exchange with a
perspective toward scaled scientific application data sets. We there-
fore explore large scale patch data exchange to better understand
performance characteristics and application requirements required
for such a micro-benchmark.

3 DATA REPARTITIONING

Data repartitioning is comprised of two sub-phases: (a) patch-to-
rank assignment (Section 3.1), and, (b) inter-process data communi-
cation (Section 3.2). The patch-to-rank phase indexes all patches in
a newly defined patch grid resulting from the repartitioned global
data set using fixed-size patches and determines the rank assign-
ment for each patch. The inter-process data communication uses
MPT’s non-blocking, point-to-point API for the data transfers that
move patches to their assigned rank.

In this section, we present the implementation details of both
sub-phases. For simplicity, we base our exposition around a 2D
example shown in Figure 2. The initial state shown in Figure 2,
comprises a 2 X 2 process grid (process ids: P0, P1, P2, and P3) with
data uniformly distributed across four processes. The processes are
further color-coded green, blue, pink, and yellow to allow process
tracking during later patch assignment, which drop the process
labels in favor of patch labels based on the patch grid imposed by
repartitioning. In this example, the goal is to repartition the data
into a 3 X 3 grid of patches (patch ids: p0, p1, ..., p8) of smaller
size. To present a more realistic scenario, we show a patch size that
does not align with the original data dimensions. Newly defined
patches that overlap the boundaries of the original data (p2, p5, p6,
p7, p8) are truncated to the boundaries of the original data. The
placement algorithm assigns the patches to the 4 processes during
patch-to-rank assignment. The patch data is moved to the assigned
process during inter-process communication.

3.1 Patch-to-rank assignment

This paper focuses on uniform-resolution data sets. The newly
imposed patch grid resulting from repartioning the original data set



Investigating Data Movement Strategies for Distribution of Repartitioned Data

comprises fixed-size patches, except for patches that intersect the
boundaries of the original data dimension as described above. Refer
to the example of a newly imposed grid of patches patch shown in
Figure 2.

Once the new patch layout is imposed, the main task is to opti-
mally assign each of the newly created patches to a process (rank).
The patch-to-rank assignment is then followed by inter-process
point-to-point communication to move the relevant patch data to
each rank. The patch-to-rank assignment algorithm directly impacts
data movement costs and overall load balance across all processes.

The main challenge in selecting a rank to which the patch is
assigned is considering how to deal with patches that are shared
by more than one process, a natural consequence of the patch size
defining a patch grid that does not align with the original data
process boundaries. We distinguish patches based on this criterion,
classifying them into two categories: fully-contained patches (FCP)
and shared-patches (SP). A FCP is fully contained within a process
before distribution. In Figure 2, p0, p2, p6 and p8 are FCPs. A SP
is shared by more than one process (i.e., each process holds some
portion of the patch). In our example, p1, p3, p4, p5, and p7 are
SPs, with p4 being shared by all four processes. We minimize data
movement costs by enforcing the FCPs to stay within their parent
rank. For example, data in p0 continues to stay with the blue rank
and will not be transferred.

SPs on the other hand, need to have the sub-parts that exist
across multiple ranks moved to a common rank to form a complete
patch on the assigned rank. This introduces the need for a patch
assignment algorithm that determines the assignment of patches
to ranks. We consider and compare two approaches: (i) a balanced
placement and (ii) a greedy placement algorithm to determine the
impact on communication cost.

3.1.1 Balanced placement . The balanced placement algorithm
seeks to maintain an even distribution of patches to maintain com-
putational workload balance for subsequent patch computations [9].
The FCPs are not moved and are thus assigned to their original
parent rank. The SPs, instead, will each be assigned to a target rank.

In Figure 2 the balanced patch placement shows the the target
patch counts for processes P0-P3 (colored green, blue, pink, and
yellow to highlight patch to process assignment) are 3, 2, 2 and 2.
Formally, balanced patch placement for a total of M patches dis-
tributed across N processes is ensured when every process gets
exactly | M/N | patches and the remaining M%N patches are spread
out uniformly across the N processes. A process will therefore ei-
ther hold | M/N] or [ M/N + 1] patches, which we call the target
patch count. To minimize data movement, we attempt to assign a
shared-patch to one of the processes that already share that patch-
-- we choose the process that has currently been assigned fewer
patches than its target patch count. If there are multiple candidate,
the process with the smallest rank is chosen. If an assigned pro-
cess for the shared-patch is found this way, then its chunk of the
shared-patch will be locally copied (instead of being sent across the
network), hence reducing data movement. Alternatively, if all pro-
cesses that contain a part of the shared-patch have already reached
their target patch count, we scan through all processes and assign
the patch to the first process that has not reached its target patch
count.
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Figure 2: Patch Layout and Distribution: the Initial State
image tile shows the global data set evenly distributed across
four processes, labeled P0-3 and color-coded to highlight
patch spanning and placement in later steps. The Imposed
Patch Grid tile shows the Initial State with a patch division
logically imposed across the data set indicating that the new
boundaries lead to logical patches now shared across multiple
ranks, patches labeled p0-8. Note the Imposed Patch Grid
leads to patches p3, p5, p6-8 overlapping the original data
set boundaries because patch size does not evenly divide the
data size. The boundary of these patches is truncated to align
with the original data boundaries. The newly defined logical
patches need to be physically arranged as undivided physical
patches assigned to specific ranks for further computation.
The Balanced and Greedy image tiles highlight the two patch
distribution schemes explored leading to even and uneven
patch data distribution for subsequent compute stages.

3.1.2  Greedy placement. The greedy placement algorithm dispenses
with any attempt to maintain a balanced patch distribution. Its goal

is to minimize data movement, therefore, it assigns patches to the

rank that contains the largest shared subpart of the patch. If there

are multiple candidates, the process with the smallest rank is cho-
sen. The assigned process will have its chunk of the shared-patch

locally copied (instead of being sent across the network), further

optimizing for minimal data movement.

In the greedy strategy, we do not use any target patch count and
in the worst case a process could be receive all the patches shared
with its neighbors. It is worth noting, that in the greedy approach, a
patch will never be assigned to a rank that does not already contain
a portion of the patch.

Patch distribution using this greedy scheme has been used, for
example in [12], albeit not for balancing the data transformation
per patch but to minimize interleaving of data samples among
processes in aggregation buffers. In Figure 2 we show that the
greedy scheme can lead to a very imbalanced patch distribution.
Here, the greedy assignment results in a distribution of 1, 2, 2, and 4
patches for processes P0, P1, P2, and P4, respectively. In Section 5 we
show through experiments that the greedy scheme can, however,
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result in an optimal data transfer times. This trade-off between
minimized data transfer times and balanced patch workloads needs
to be assessed based on workflow throughput goals due to the
potential for significantly longer computation times for imbalanced
workloads as shown in [9].

3.2 Inter-process data communication

Once a target rank is assigned to every patch by the chosen place-
ment algorithm, we initiate inter-process data communication to
appropriately move patches to their target rank. We divide the set
of processes associated with a patch into senders and receivers. The
receiver is the one process to which the patch is assigned. The rest
are senders. In the case of a FCP, the sender and receiver are the
same rank. In the case of a SP, each sender sends the region of the
patch that it holds to the receiver.

The patch-to-rank assignment algorithm is run concurrently on
every process, ensuring that every process knows exactly whether
it is a receiver or sender for a patch and what data it is expected to
send or receive. For the actual inter-process data communication
to distribute patches to their assigned ranks, we have implemented
two different schemes: per-patch communication and per-rank com-
munication. These schemes explore the impact of buffer size on
communication overhead to determine if the per-patch communica-
tion introduces inefficiencies in data transfer that can be alleviated
by reducing the frequency of inter-process communication events
through explicitly prepared per-rank buffers.

3.2.1  Per-patch communication. Per-patch communication inter-
faces with the MPI point-to-point communication calls at the level
of patches. The algorithm iterates over the patches that are to be
received and sent by the rank and issues MPI non-blocking receives
and sends as each patch is processed. For per-patch communication,
the MPI_Type_create_subarray is used to define the non-contiguous
sub-patch regions from the original data set that are sent and re-
ceived over the network. For per-patch communication, we issue
the full batch of MPI_Irecv calls for each patch or patch portion of a
shared patch assigned to the local rank. This creates a pending MPI
request for each patch that will be satisfied by the corresponding
MPI_Isend calls of the senders of the corresponding patch data.
After all the sub-patch regions are sent and received, every process
ends up with their assigned patches, each of which is stored in a
separate contiguous memory block, ready for subsequent computa-
tional steps. See Figure 2 and earlier discussion of the exhibition
example with numbered patches and colored processes to help to
visualize the data exchanges resulting from patch assignment.

3.2.2  Per-rank communication. Per-rank communication interfaces
with the MPI point-to-point communication calls at the level of
manually-packed, per-rank patch buffers. The algorithm iterates
over the patches that are to be received by the rank and creates a
buffer sized to accept all patch data expected from a specified sender
rank. It then issues a non-block MPI_Irecv call for each rank’s re-
ceive buffer. It then iterates over the patches to be sent by the rank
and manually packs the non-contiguous patch data into a per-rank
send buffer that will contains all patch data exchanged with a spe-
cific rank. As with the receive phase, no MPI communication calls
are issued until after the buffer packing phase is complete. After the
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buffers are packed, the algorithm issues a non-blocking MPI_Irecv
call for rank buffer. This reduces the pending MPI request set to
one send and one receive request per rank pair.

Note that the MPI_Type_create_subarray calls used to simplify
patch data collection for per-patch communication cannot be used
for per-rank communication because the aggregate patch structure
no longer has a regular structure needed by this call. This requires
development of explicit steps to manual gather non-contiguous
patch data from the data set and pack it into per-rank buffers, rep-
resenting additional developer effort to implement buffer packing.

To measure the MPI communication cost for both per-patch
and per-rank communication, we initialize the MPI communica-
tion timer at the beginning of the the receive and send request
generation phase but after the parallel execution of the placement
algorithm. Therefore, the timed executions include the time it takes
to gather the patch data into buffers to send to peer processes, ei-
ther implicitily with per-patch or explicitly with per-rank. Once
all MPI non-blocking requests have been issued, the ranks enter
an MPI_Waitall barrier to block the ranks until all data exchange
has completed. We record the end time on the return from the wait
call and take the total MPI communication time as the difference
between the end time and the time recorded at timer initialization.
We record this delta as the total MPI communication time for each
rank. In both scenarios, we record the time of the MPI communi-
cation as the time of the slowest rank, since the processes will not
continue until the slowest rank completes communication.

4 EMPIRICAL EVALUATION
4.1 HPC platform

All our experiments are performed on the Theta Supercomputer [8]
at the Argonne Leadership Computing Facility(ALCF). Theta is
an Intel-Cray XC40 with a peak performance of 11.69 petaflops,
281,088 compute cores, 843.264 TiB of DDR4 RAM, 70.272 TiB of
MCDRAM, and 10PiB of online disk storage. The supercomputer has
a Dragonfly network topology [2] and a Lustre filesystem. We do
not investigate specific performance impacts of non-local commu-
nication patterns of the Dragonfly network outside the aggregate
communication performance of application workload. The current
version of our micro-benchmark does not address system-to-device
data transfer performance of GPU based workloads. The focus of
this study is exclusively on inter-process communication costs for
CPU workloads where each MPI rank is associated with a single
processor core. As such, measured data exchange performance does
not differentiate between intra-CPU, intra-node, or other aspects
of the cluster network topology.

4.2 Experiment setup

We evaluate the performance of our four data repartitioning strate-
gies: (a) greedy, per-rank, (b) greedy, per-patch, (c) balanced, per-
rank, and, (d) balanced, per-patch. We measure the performance of
the four strategies by recording their time to completion for MPI
point-to-point communication. We evaluate the performance of the
four strategies using synthetic micro-benchmarks, that simulate
real-world application scenarios. The benchmark operates in two
phases, data generation, where each process generates data for the
rank’s portion of the global data set it holds (see P0, P1, P2 and P3



Investigating Data Movement Strategies for Distribution of Repartitioned Data

04 0.4
m Balanced, per-patch ~ ® Greedy, per-patch
03 03

0.2 0.2

0.1

0.1
., A0 HEHl u=m
0

1024 2048 4096

1024 2048 4096

(a) 10003, imposed patch=32° (b) 1000, imposed patch=643

5 5
a5 a5

4 4
35 35
3 3
25 25
2 2
1.5 15
: il : In
0.5 0.5
s 1 Em
1024 2048 4096 1024 2048 4096

(e) 3000°, imposed patch=323 (f) 3000°, imposed patch=643

20 20
18 18
16 16
14 14
12 12
10 10
8 8
6 6
I3 I3
: im L]
0 0
1024 2048 4096 1024 2048 4096

(i) 6000%, imposed patch=323 (j) 60003, imposed patch=64°

PEARC 24, July 21-25, 2024, Providence, RI, USA
04 0.4

03 03
02 02
0.1 I I I I 0.1 I I
[} 0 I l

1024 2048 4096 1024 2048 4096

(c) 1600%, imposed patch=323 (d) 1600%, imposed patch=643

5 5
45 45
4 4
35 35
3 3
25 25
2 2
15 15
. i1 Hn 1 ]
0.5 0.5 . .
0 . - 0
1024 2048 4096 1024 2048 4096

(g) 32003, imposed patch=323 (h) 3200%, imposed patch=64>

20 20
18 18
16 16
14 14
12 12
10 10
8 8
6 6
.| | 11
2 2
o . o
1024 2048 4096 1024 2048 4096

(k) 6400%, imposed patch=323 (1) 6400%, imposed patch=64°

Figure 3: Timing for repartitioning for different workloads. Blue bar is the balanced, per-patch scheme and red bar is for greedy,
per-patch. X-axis for all graphs shows three process counts, 1024, 2048 and 4096. Y-axis for the graphs is time in seconds.

held by ranks green, blue, pink, and yellow in Figure 2) followed
by the data redistribution phase. Any subsequent phases of real ap-
plication workloads would normally exist after data redistribution,
for example, wavelet transformation and compression phases doc-
umented in earlier work [9, 12]. This investigation, ignores these
down stream phases to focus exclusively on the data redistribution
behavior and performance.

The data generation phase includes allocation of the rank’s por-
tion of the global data set, the calculations to determine how the
global data set is divided into patches, and finally execution of the
patch placement algorithm, that determines the patch assignments
for distribution of patches to the ranks in phase two. In all our
experiments we only measure the communication time that occurs
during the data redistribution phase. Time to completion is our
only performance metric. This metric only depends on the nature
of data transfers (amount and pattern), rather than the nature of
the data itself -- making synthetic benchmarks suitable, as they can
be easily modeled to generate different workloads and patch sizes.

We perform a series of scaling experiments with varying work-
loads and patch sizes. We use patch resolutions of 32 X 32 X 32 and
64 X 64 X 64. We keep the patch resolution to be powers of two. This
is characteristic of common wavelet sizes used in image processing
to ensure that the patch boundaries are computed correctly. We ran
scaling tests at different problem sizes. We used six global resolu-
tions 16003, 3200°, 6400%,1000%, 3000%, and 6000°. The first three
correspond to the case when the global resolution and the newly

imposed patch grid align, and the last three correspond to the case
where the global resolution does not align with the newly imposed
patch grid. We use 8-byte (64-bit) data types for all tests so that
patches are either 0.25 Megabytes(MB) for 323 patches or 2MB for
643 patch sizes. The global data set sizes range from ~ 8Gigabytes
(GB) at 1000 resolution to ~ 2Terabytes (TB) at 64003 resolution.
With 6 global resolutions and 2 patch size settings, we have 12 sets
of experiments. For each of these 12 experiment sets, we vary the
process counts across 1024, 2048 and 4096 (strong scaling exper-
iments). We ran all our experiments for 50 iterations, and have
plotted the median.

5 RESULTS

Figure 3 shows the results for balanced and greedy placement with
per-patch communication for all 12 experiments. We observe the
expected benefits of strong scaling as process counts increase and
the data exchange burden of individual tasks diminishes. These
two methods perform similarly for global data sets sizes below
3200% (i.e. data sets below approximately 250GB). This confirms
that using balanced patch placement to facilitate workload balance
for downstream tasks is an effective strategy for such data sets. [9]
Greedy patch placement outperforms balanced placement as the
global resolution increases. While this is a somewhat intuitive re-
sult, since greedy placement explicitly favors less data movement,
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Figure 4: Per-patch vs. Per-rank comm. Blue is per-patch, red
is per-rank. Per-patch consistently outperforms per-rank.
Time on Y-axis is in seconds.

it demonstrates that data movement impacts on application perfor-
mance may not be measurable unless data sets of significant size
are included in the test scenarios.

It also suggests opportunities for heterogeneous, multi-core en-
vironments to pursue an early start on downstream compute tasks
for FCPs while SPs are exchanged. FCP are immediately available
for local computation without the need for data transfer between
ranks. This approach could offset the generally higher workload
imbalance that results from greedy placement by reducing the total
amount of compute (FCP + SP) remaining after all SPs have been
received .

We observe an unexpected inversion of the strong scaling per-
formance pattern at the largest global resolution (2TB) and process
count (4096) as seen in Figure 31, which suggests the potential for
unexpected behaviors as global resolution increase. To investigate
potential causes of unexpected behaviors at scale, we plot per-rank
MPI communication performance using a "box plot per rank" lay-
out that summarizes all sampled runs for each rank, see Figure 5.
This has proved a useful debugging tool that enables observation
of characteristic performance across the entire collection of MPI
processes. This figure includes characteristic performance plots
for both balanced and greedy assignment runs as summarized in
Figure 31. It is clear from the greedy plot that there are a set of ranks
that consistently report performance well below (slower than) the
remaining ranks causing them to dominate the slowest performer
metric used to record test performance. We were unable to uncover
and resolve the root cause of this anomaly, these ranks do not carry
an undue burden of communication nor are they assigned more
patches than any other ranks. We suspect an algorithmic error
in our micro-benchmark that manifests at this scale in our test.
While an unsatisfying result, we note that, in the absence of these
rank outliers, the performance trend of the well-behaving ranks
for greedy placement is in line with the performance of the results
for balanced placement results. This is consistent with our other
reported 4096 rank results.

This error represents a characteristic challenge of scaling bench-
marks to model emerging large scale data sets, on the way to Exas-
cale. There were several improvements necessary to counters and
memory allocations in our micro-benchmark to handle our largest
(2TB) tested data set, as prior versions had only been used up to
30GB data sets. Additionally, MPI processes had to be scheduled at
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half- and quarter node capacity to accommodate per-node mem-
ory limits on Theta. Further improvements to benchmark memory
management are warranted.

For inter-process communication, we observed that the per-patch
communication scheme consistently outperformed the per-rank
communication scheme. We highlight this result in Figure 4 for
two data set sizes of 30003 and 6000° for the imposed patch size of
323, Our interpretation of the performance advantage for per-patch
communication is that the MPI subarray derived data type is an ef-
ficient mechanism for gathering non-contiguous data for exchange
with other processes. This implementation is able to outperform our
basic per-rank communication because the initial per-patch MPI
requests are ready for transfer as the algorithm continues to pro-
cess later patches. This enables MPI to start patch exchange while
other patches are gathered (as memory is read). In contrast, our
naive per-rank buffer model delays the start of MPI patch exchange
until buffer construction is complete (after having read through all
memory). Our per-patch and per-rank experiments measure two
extremes of communication patterns and clearly demonstrate that
implementations that enable an early start to their communication
by exchanging smaller buffers can have a significant impact on their
overall performance. A more subtle impact of explicitly managed
buffers is that they directly compete with the application for scarce
memory resources, introducing additional memory management
overheads, which complicates and limits scaling to very large data
sets, especially for the smaller rank counts where RAM-per-node
is limited relative to the data set.

In summary, these results show that larger data sets are necessary
to successfully measure the impact of data movement on task com-
pletion times. It was only for data sets at 32003 x 8bytes = 244GB
and above where we observed a significant difference in greedy
versus balanced placement. This demonstrates that future perfor-
mance assessments of placement strategies need to include large
scale data sets to get a comprehensive understanding of the perfor-
mance benefits of different methods. The results further suggest
that performance differences may also relate to the rank count and
associated per-rank patch processing overhead. The patches-per-
rank count drops under strong scaling scenarios and limits the
per-rank data exchange effort. This appears to impact the unifor-
mity of measured performance under strong scaling scenarios. This
observation warrants further study. Finally, while the per-patch and
per-rank communication tests showed per-patch communication
as universally superior, we suspect there is potential for tuning the
number of patches included in MPI_Isend and MPI_Irecv calls to
explore if there is a benefit to batching more than one patch and less
than all patches in a single communication transaction. More ad-
vanced communication implementations are needed to fully explore
this scenario, possibly using MPI partitioned communications.

6 FUTURE WORK

An aspect of the per-rank implementation that was not explored
in this work was resize-able send buffers. That is, we either had
per-patch communication with an MPI Isend & Irecv for each patch
or a per-rank communication that included all the patches destined
for a neighboring process. It is possible that tuning the per-rank
implementation to issue MPI requests after set amounts of patches



Investigating Data Movement Strategies for Distribution of Repartitioned Data

PEARC 24, July 21-25, 2024, Providence, RI, USA

Per-Rank MPI Comm Time Distribution
ranks=4096, parameters=balanced

o

5

w

MPI Comm Time (seconds)
N >

512
1024
1536

©
<
o
~

3072
3584
4096

Per-Rank MPI Comm Time Distribution

MPI Comm Time (seconds)

o~ < ©
— N I
n o 1

= =

2048

ranks=4096, parameters=greedy

3072
3584
4096

Figure 5: Plot of per rank MPI communication times for balanced (top) and greedy (bottom) patch-to-rank assignment. The
data points are per-rank box plots for each of the 50 samples for global size 64003, patch size 64> and rank count 4096. The
greedy placement plots shows that specific ranks contribute to the unexpected loss of strong scaling for the greedy assignment
highlighted in Figure 31. Balanced assignment included for comparison and discussion.

are gathered could improve per-rank performance. MPI partitioned
communication to leverage threaded communicators is an area
of future research interest. Additionally, while the communica-
tion times generally decrease as process counts increase, there are
lots of subtle variation between the methods that make it hard to
define specific heuristics for performance. This is likely further
complicated by the variable compute demand of different appli-
cation workflows. We plan to investigate the integration of ML
algorithms [6] to improve the placement methods and communica-
tion parameters that would allow automatic tuning of performance
for specific application needs and potentially better account for
unexpected behaviors at scale.
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