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Abstract—Repartitioning in a parallel setting can be defined as
the task of redistributing data across processes based on a newly
imposed grid/layout. Repartitioning is a fundamental problem,
with applications in domains that typically involve computation
on tiles (blocks/patches) of varying resolution, for example, while
creating multiresolution data formats in in-situ mode (such as
the JPEG format and its variants). This paper explores the
performance and tradeoffs of different ways to perform the data
redistribution phase. We explore a greedy scheme that aims to
minimize data movement while compromising on load balancing
and a balanced scheme that aims to create a balanced load
across processes while compromising on data movement. For both
schemes, we further compare per-patch (staggered data transfer)
and per-rank (aggregated data transfer) communication patterns
to measure the impact of buffer size on MPI point-to-point
communication performance. We conclude that the reduced data
movement of the greedy scheme leads to reduced transfer times
during redistribution. We further conclude that the per-patch
communication pattern outperforms per-rank communication.

Index Terms—data movement, data layout, load-balancing

I. INTRODUCTION

Repartitioning entails the task of redistributing existing

data across the available set of processes based on a new

grid/layout [3]. There are different approaches to distributing

the new patches across the available set of processes. Figure 1

introduces the data repartitioning problem and highlights a key

challenge: how to assign shared-patches (SP) to ranks.

The Initial State image tile shows the global data set evenly

distributed across four processes, labeled P0-3 and color-coded

to highlight patch spanning and placement in later steps. The

Imposed Patch Grid tile shows the Initial State with a patch

division logically imposed across the data set indicating patch

boundaries now shared across ranks, labeled p0-8. The logical

patches need to be arranged as contiguous data assigned to

specific ranks for further computation. The main challenge in

assigning patches to ranks is how to deal with patches that

span processes: shared-patches (SP) p1, p3, p4, p5, and p7.

Fully-contained patches (FCP) are fully contained within a

process after repartitioning (p0, p2, p6 and p8) and remain with

their original rank to minimize data movement. The Balanced
and Greedy image tiles highlight the two patch distribution

schemes explored, leading to even and uneven patch data

distribution for subsequent compute stages. Greedy placement

assigns the SP to the rank that already holds the largest part

of the SP, at the cost of imbalanced workload distribution.

The balanced placement algorithm seeks to maintain an even

Fig. 1: Data Repartitioning Problem: reassigning shared

patches resulting from new grid/layout to ranks. Color indi-

cates process owner of data before and after repartitioning.

distribution of patches to maintain computational workload

balance for subsequent patch computations [2].

II. EMPERICAL EVALUATION

A. HPC platform

All our experiments are performed on the Theta Super-

computer [1] at the Argonne Leadership Computing Facil-

ity(ALCF). Theta is a Cray machine with a peak performance

of 11.69 petaflops, 281,088 compute cores, 843.264 TiB of

DDR4RAM, 70.272 TiB of MCDRAM, and 10PiB of online

disk storage. The supercomputer has a Dragonfly network

topology and a Lustre filesystem.

B. Experiment setup

We evaluate the efficacy of our four data repartitioning

strategies: (a) greedy, per-rank, (b) greedy, per-patch, (c) bal-

anced, per-rank, and, (d) balanced, per-patch. We measure the

performance of the four strategies by recording their time to

completion. We evaluate the performance of the four strategies

using synthetic micro-benchmarks, that simulate real-world

application scenarios.

The greedy and balanced patch placement strategies are

used to assign the logical patches to their defined rank as

described in the Introduction. The per-patch and per-rank

communication algorithms define how the patch buffers are
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(a) 10003, imposed patch=323 (b) 10003, imposed patch=643 (c) 16003, imposed patch=323 (d) 16003, imposed patch=643

(e) 30003, imposed patch=323 (f) 30003, imposed patch=643 (g) 32003, imposed patch=323 (h) 32003, imposed patch=643

(i) 60003, imposed patch=323 (j) 60003, imposed patch=643 (k) 64003, imposed patch=323 (l) 64003, imposed patch=643

Fig. 2: Timing for repartitioning for different workloads. Blue bar is the balanced, per-patch scheme and red bar is for greedy,

per-patch. X-axis for all graphs shows three process counts, 1024, 2048 and 4096. Y-axis for the graphs is time in seconds.

exchanged between ranks. Per-patch communication issues

non-blocking, point-to-point MPI calls for each patch. Per-

rank communication packs all patches destined for a rank into

a per-rank buffer for which the rank then issues a single non-

blocking, point-to-point MPI call to transfer. This exploration

is motivated to measure the potential impact of smaller mes-

sage sizes in the per-patch approach on communication time.

III. RESULTS

Figure 2 shows the results for balanced and greedy place-

ment with per-patch communication for all 12 experiments.

We observe the expected benefits of strong scaling as process

counts increase and the data exchange burden of individual

tasks diminishes. These two methods perform similarly for

global data sets sizes below 32003 × 8bytes ≈ 250GB. This

confirms that using balanced patch placement to facilitate

workload balance for downstream tasks is an effective strategy

for data sets below that size [2]. For larger data sets, greedy

placement significantly reduces communication time, suggest-

ing opportunities for early start to computation to offset the

inherent data imbalance. At 4096 rank counts, performance is

similar in all cases. We conclude this results from the small

patch communication workload required of each rank.

We observed per-patch communication consistently outper-

formed the per-rank communication, highlighted in Figure 3

for two data set sizes of 30003 and 60003 for the imposed

patch size of 323. Per-patch communication benefits from MPI

(a) 30003, imposed patch=323 (b) 32003, imposed patch=323

Fig. 3: Per-patch vs. Per-rank comm. Blue is per-patch, red is

per-rank. Per-patch consistently outperforms per-rank.

requests available for transfer as patches are processed. In

contrast, per-rank buffers delay the start of MPI patch ex-

change until rank buffer packing is complete (after reading all

memory). Future work will explore the use of MPI partitioned

communication to facilitate partial per-rank buffer transfers.
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