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Abstract—Non-uniform all-to-all communication patterns
present optimization challenges in parallel computing due to
their irregular data distribution and dynamic behavior. While
MPI_Alltoallv provides the standard interface for such ex-
changes, achieving optimal performance requires careful selec-
tion among multiple implementation variants and tuning of
algorithm-specific parameters. This paper presents a data-driven
autotuning framework that combines machine learning-based
runtime prediction with a lookup-table mechanism for fast con-
figuration selection. The ML model estimates the communication
time of each algorithm configuration under a given system setup,
allowing the framework to identify the optimal implementation
and parameter set based on predicted performance. We val-
idate our approach through comprehensive benchmarking of
MPI_Alltoallv and two specialized algorithms across varying
process counts, message sizes, and tunable parameters. Applied
to a real MPI-based transitive closure application on the Fugaku
supercomputer, our framework achieves up to 6.03 x reduction in
communication time over the vendor implementation, providing a
detailed understanding of non-uniform collective communication
behavior and a practical framework for automatic performance
optimization in HPC applications.

Index Terms—MPI_Alltoallv, autotuning, collective communi-
cation, machine learning, sensitivity analysis

I. INTRODUCTION

Collective communication primitives are essential to high-
performance computing (HPC), enabling scalable data ex-
change and synchronization among processes. Among these,
non-uniform all-to-all data exchange (MPI_Alltoallv) [1],
[2] plays a critical role in numerous real-world applications,
including graph analytics [3], sparse matrix computations [4],
and scientific simulations [5], where processes exhibit hetero-
geneous communication patterns with varying message sizes.
State-of-the-art non-uniform all-to-all implementations ranging
from the classic algorithms provided by MPI libraries to
specialized methods such as parameterized all-to-all (ParAta)
and hierarchical all-to-all (HieAta), proposed by our prior
research [6] [2]. Each implementation exposes configurable
tuning parameters (e.g., radix, batch_size) whose values can
dramatically affect performance. Consequently, optimizing
non-uniform all-to-all operations involves not only choosing
the optimal algorithm but also selecting appropriate parameter
configurations. However, this optimization is challenging due

to the high variability in message sizes and communication
patterns across processes and over time, coupled with the
expansive combined space of implementation choices and
tuning parameters. Exhaustive search or manual tuning during
execution is impractical, and any effective autotuning strategy
must incur minimal overhead to ensure net performance bene-
fits. Existing MPI libraries typically rely on fixed heuristics
or static decision rules, which cannot adapt effectively to
the irregular and dynamic nature of real-world HPC com-
munication workloads. As a result, this necessitates flexible,
adaptive tuning frameworks that are capable of autonomously
identifying both the optimal implementation and parameters
for non-uniform all-to-all exchange.

Prior works on optimization for collective routines employ
a range of approaches, including analytical modeling [7],
[8], empirical benchmarking [9], [8], and machine learning-
based autotuning, both offline and online [10], [11], [12],
[13], [14], [15], [16]. Efficiently tuning non-uniform all-to-
all data exchange remains challenging due to the irregularity
of message sizes and diverse communication patterns. While
prior studies [14], [17], [6] have begun to explore non-uniform
collectives (such as reduce-scatter), comprehensive analyses
addressing the impact of variable block sizes on performance
and algorithm selection are still lacking. Our work bridges this
gap by targeting non-uniform all-to-all (all-to-allv).

The main contribution of this work is an auto-tuning
framework targeting all-to-allv data exchanges that combines
data benchmarking, feature reduction, machine learning (ML)
prediction, and lightweight runtime tuning to automatically
select the most efficient algorithm and parameters for different
communication patterns. The framework is built on top of
the ParAta and HieAta algorithms, which offer parameterized
implementations of non-uniform all-to-all data exchanges by
exposing parameters such as radiz and batch_size. Our work
is implemented through the following four main components
that together enable efficient, on-the-fly optimization for non-
uniform all-to-all communication:

1) Sensitivity-guided feature reduction: We conduct a sensi-
tivity analysis to identify the minimal yet most effective
set of predictive features, thereby reducing both model
complexity and runtime overhead.



2) ML-based performance modeling: We develop a predictive
model that estimates the runtime of non-uniform all-to-all
operations under various algorithms and parameter settings,
utilizing large-scale benchmark data.

3) Efficient offline lookup construction: We generate a com-
pact lookup table that maps observable runtime features
(e.g., process count, average message size, and topology)
to the optimal algorithm and configuration.

4) Lightweight runtime integration: We implement a C++
runtime wrapper that queries the lookup table to select and
invoke the best algorithm at each invocation, adding less
than 1% overhead while achieving substantial performance
gains on real HPC applications.

Our approach enables dynamic optimization for applications
that repeatedly invoke non-uniform all-to-all operations with
time-varying workloads, automatically adapting both imple-
mentation selection and parameter configuration to match
evolving communication patterns. This capability is essen-
tial for applications exhibiting temporal variations in data
distribution and communication requirements. We validate
our methodology through comprehensive evaluation using
both synthetic benchmarks and production-scale applications
on two leadership-class supercomputers: Polaris at Argonne
Leadership Computing Facility and Fugaku at RIKEN. Our
framework exhibits a performance improvement of 6.03x
in communication time over the vendor implementation of
MPI_Alltoallv when applied to an actual MPI-based graph
mining application on the Polaris supercomputer.

II. BACKGROUND

In this section, we introduce the basics of non-uniform all-
to-all data exchange, necessary for understanding the sub-
sequent sections. We present three key components: first,
we present the formal definition of non-uniform all-to-all
(Section II-A), second, we describe two fundamental algo-
rithmic approaches for implementing all-to-all (Section II-B),
and finally, we discuss two tunable implementations of non-
uniform all-to-all that this work is based on (Section II-C).

A. Definition of Non-uniform All-to-all

With P processes, non-uniform all-to-all data exchange can
be expressed as follows. Every process has a send buffer
(initialized with data), logically made out of P data-blocks
(S[0... P—1]), each with an arbitrary number (n) of elements
with a certain data-type (e.g., integer or float). Similarly,
processes also have a receive buffer (initially empty), log-
ically made out of P data-blocks (R[0...P — 1]). When
implemented by MPI_Alltoallv, both the send and receive
buffers are contiguous 1-D arrays of size P x n elements
where all data-blocks S[0...P — 1] and R[0... P — 1] are
laid out in increasing block order. During communication, a
process with rank j (0 < j < P —1) transmits the data-block
S[i] (0 £ 4 < P—1) to a process with rank ¢ and receives
a data-block from rank ¢ into the data-block R[], except the
data destined for itself.

B. Standard Implementations of All-to-all

Multiple algorithmic approaches have been developed to
implement non-uniform all-to-all data exchange. These algo-
rithms can be categorized by the value of the parameter radix:
(1) radix-2 and (2) radix-P approaches, where P denotes the
total number of processes. These two categories exhibit dif-
ferent computational complexities: radix-2 algorithms exhibit
logarithmic complexity, completing the exchange process in
logs(P) communication rounds, with each round exchanging
multiple data-blocks per process. In contrast, radix-P algo-
rithms demonstrate linear complexity, requiring P communi-
cation rounds, with each round exchanging one data-block
per process. The Bruck algorithm [18] and the Spread-out
algorithm [19] are two classic representatives of these two
categories, respectively.

Spread-out algorithm: This algorithm is the most intuitive
implementation of all-to-all, utilizing non-blocking point-to-
point communication primitives. In this algorithm, each pro-
cess first posts all receive requests using MPI_Irecv in a
loop, then posts all send requests using MPI_TIsend in a
subsequent loop, followed by an MPI_Waitall operation to
ensure completion of communication. Notably, this algorithm
enables each process to communicate with different destination
processes per round to avoid potential network congestion.

Bruck algorithm: This algorithm is a classical logarith-
mic all-to-all algorithm with radix 2. Its efficiency lies in
transmitting larger volumes of data with fewer communication
rounds. In its original form, it comprises three phases: a local
initial data rotation phase, a communication phase with log, P
rounds, and a local inverse data rotation phase. The commu-
nication phase is characterized by the binary representation
of data-block indices, with a varying number of data-blocks
exchanged per round. It is a store-and-forward algorithm,
where data blocks received in one round are forwarded in
subsequent rounds for further transmission.

C. Tunable Implementations of All-to-all

Existing implementations in popular libraries (e.g.,
MPICH [20] and OpenMPI [21]) primarily focus on two
extreme radix values (2 and P), thereby overlooking a
substantial, unexplored parameter space between them. The
capacity to dynamically tune the algorithm’s radix between 2
and P would enable flexible adjustment of communication
rounds and data exchange volumes, facilitating fine-grained
performance optimization [2]. This paper examines two
non-uniform all-to-all algorithms introduced in our previous
work: parameterized all-to-all (ParAta) and hierarchical
all-to-all (HieAta). Both algorithms incorporate a configurable
radix parameter that enables smooth transitions between
logarithmic and linear algorithmic regimes. Additionally,
HieAta introduces a second tunable parameter, batch_size,
which constrains the maximum number of simultaneous
communication requests in the network to further mitigate
network congestion. These highly tunable algorithms are the
primary focus of this paper.
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Parameterized all-to-all (ParAta) algorithm: This algo-
rithm is built upon three key ideas to enable the performance
tunability for non-uniform all-to-all: (1) a logarithmic-time
generalized implementation of the Bruck-style algorithm with
varying radices, (2) a two-phase data exchange mechanism in
each communication round, comprising a metadata exchange
followed by actual data transfer, and (3) a strategically sized
temporary buffer (7") to support intermediate data exchanges
during logarithmic communication rounds. These design ideas
enable users to optimize the trade-off between the number of
communication rounds and the size of data exchanges, leading
to improved performance scalability.

Hierarchical all-to-all (HieAta) algorithm: This algorithm
leverages a multi-layer hierarchical architecture on modern
HPC systems through a decoupled communication structure.
This structure separates data exchanges into two distinct
phases: intra-node communication, utilizing shared memory
within nodes, and inter-node communication, facilitating mes-
sage transfer across the network. Based on the observation that
intra-node communication is dominated by latency while inter-
node communication is dominated by bandwidth, intra-node
communication employs the ParAta algorithm. In contrast,
inter-node communication uses the scattered algorithm. The
scattered algorithm is an optimized version of the spread-out
algorithm, which integrates an additional tunable parameter,
batch_size, to control the maximum number of simultane-
ous communication requests existing in the network. Conse-
quently, this algorithm incorporates dual parametric controls,
with separate tunable parameters governing the intra-node and
inter-node communication phases.

III. END-TO-END AUTOTUNING FRAMEWORK

Our work aims to develop an adaptive autotuning framework
capable of dynamically selecting both the most efficient all-
to-allv implementation and its corresponding optimal param-
eter configuration. This framework addresses the needs of
applications with temporally varying communication patterns,
enabling automatic runtime adaptation to achieve optimal
performance across evolving workload characteristics.

Our framework operates through two interconnected phases
that collectively enable real-time optimization of all-to-allv
communication. The first phase (Section IV) conducts sen-
sitivity analysis to identify the subset of parameters with the

prising phases 1 (blue boxes) and 2 (green boxes).

strongest performance impact, while the second phase devel-
ops a machine learning-driven performance model that powers
a lightweight lookup mechanism for runtime optimization.
Figure 1 illustrates the complete framework architecture. Phase
1 involves exhaustive performance characterization across all
feasible parameter combinations and workload distributions,
generating a comprehensive dataset of execution behaviors.
This empirical analysis is complemented by statistical sensitiv-
ity analysis to identify the most influential parameters, thereby
effectively reducing the dimensionality of the optimization
space while preserving prediction accuracy.

The second phase (Section V) leverages the refined param-
eter set and performance data to train multiple ML models,
selecting the most effective predictor for our specific optimiza-
tion problem. The trained model extends the empirical dataset
by generating performance predictions for previously unob-
served parameter combinations, creating a dense lookup table
that covers the entire feasible parameter space. This lookup
mechanism integrates seamlessly with existing applications,
enabling automatic selection of optimal implementations and
parameter configurations with minimal runtime overhead.

IV. PHASE 1: FEATURE SELECTION FOR THE ML MODEL

Feature engineering plays a crucial role in the perfor-
mance of machine learning (ML) models, as the selection
and characterization of input variables directly affect predictive
accuracy [22]. In the context of communication optimization,
these features must capture the essential properties of parallel
workloads and system configurations that shape performance
behavior [23]. In our work, we identify a comprehensive set
of performance-determining parameters and categorize them
into five classes: execution, algorithmic, model, platform, and
statistical parameters, each of which affects a distinct aspect
of communication behavior. Table I summarizes these input
parameters used in our ML models.

a) Execution Parameters.: Execution parameters are
manually configured runtime variables that determine the
communication workload and closely relate to the hardware
specification. They include the total number of processes (P)
and the number of processes per node (PPN). These pa-
rameters directly influence communication concurrency, load
balance, and message routing.



b) Algorithmic Parameters.: Algorithmic parameters re-
fer to tunable variables specific to an implementation, such as
the radix (r) and batch_size (b) used in our non-uniform all-
to-all algorithms. They control how the communication rounds
are decomposed and how many concurrent communication
requests can be issued in each round.

c) Model Parameters.: Model parameters define the
high-level algorithmic choices made by the performance model
or runtime system. They determine which collective communi-
cation algorithm is selected for execution, directly influencing
overall performance behavior.

MPI collective primitives are widely adopted but pose per-
formance risks, as their abstraction conceals implementation
details. For instance, MPICH [20] provides 3-4 algorithms
per primitive, each with distinct performance characteristics
depending on various factors. This diversity of algorithmic
choices highlights the importance of treating algorithm se-
lection itself as a key model parameter when predicting or
optimizing communication performance. In our case, this in-
cludes both our proposed ParAta and HieAta implementations,
as well as the vendor-optimized MPI_Alltoallv, which we
treat as a single baseline despite its internal variants to enable
direct comparison.

d) Platform Parameters.: Platform parameters represent
architecture-dependent characteristics external to the applica-
tion, such as the underlying network topology (7), bandwidth,
and latency. Among them, we explicitly include the topology
parameter in our model to capture the architectural effects of
heterogeneous interconnects.

e) Statistical Parameters.: Statistical parameters describe
the non-uniformity of the communication workload. Unlike
traditional uniform collectives, where message size alone is
sufficient, non-uniform all-to-allv patterns require richer de-
scriptors of data distribution. We therefore incorporate mul-
tiple statistical descriptors of the data-block size distribution,
including the mean (up), maximum (By,ax), variance (cr%),
quartiles (Q1(B) and Qs(B)), skewness (yp), and kurtosis
(xB). For P processes, B;; denotes the data-block size sent
from process i to process j, forming a dense P x P commu-
nication matrix.

The selection of these statistical parameters is motivated
by their ability to capture distinct characteristics of data
distributions that directly influence the performance of all-
to-allv communication. The mean, pp denotes the average
message size for communication between ranks, it characterize
the overall amount of data communicated between ranks. The
variance quantifies the degree of heterogeneity in the message
sizes, which can lead to load imbalance. The maximum value
and percentile measures (25% and 75%) characterize both
extreme and typical lower and higher values of the message
sizes within the distribution. These metrics can potentially
enable the model to balance optimization decisions between
frequently occurring data sizes and outlier cases that may
disproportionately impact overall performance. Skewness mea-
sures the asymmetry of the distribution, while kurtosis charac-
terizes its tailedness, indicating the presence and influence of
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Fig. 2. Example of 6 block-size distributions, each parameterized if applica-
ble, over 4,096 processes, with a maximum block size of 4,096 bytes.

extreme values. These higher-order moments are potentially
important for identifying cases in which very large or very
small message sizes may introduce performance bottlenecks.

A. Sensitivity Analysis

While we defined comprehensive statistical parameters to
characterize various workload distributions, incorporating all
parameters into the prediction model is neither feasible nor
advisable. The number of input parameters must be con-
strained for three critical reasons: (1) model complexity and
overfitting concerns, (2) lookup table scalability limitations,
and (3) runtime overhead considerations.

To address these challenges while retaining the most infor-
mative statistical features, we conduct a lightweight sensitivity
analysis as a pre-training phase. This sensitivity analysis
focuses on identifying the most impactful features rather than
constructing a final predictor. To maintain low experimental
costs, we employ coarse sampling of non-statistical param-
eters compared to the comprehensive training process, while
extensively varying the underlying data distributions (shown in
Figure 2 and explained in Section VI-A) to ensure that retained
statistics remain robust across diverse workload patterns. We
quantify the input vector:

x= (P, PPN, 7, A, 1, b, up, 0%,
Brax, Ql(B)7 Q3(B)a VB> HB)

The predictive model is formally defined as: T = f(x), where
T represents the execution time of a non-uniform all-to-all im-
plementation, and x denotes a multidimensional feature vector
that encapsulates platform, execution, model, algorithmic, and
statistical parameters. We quantify each feature’s contribution
to explained variance using Analysis of Variance (ANOVA).
Statistical parameters demonstrating negligible sensitivity are



excluded from the final model to enhance computational
efficiency and mitigate overfitting risks.

V. PHASE 2: PERFORMANCE PREDICTION FRAMEWORK

Following feature selection, we conduct extensive bench-
marking studies (described in Section V-A) and develop ma-
chine learning predictors trained on the collected performance
data (described in Section V-B), culminating in the develop-
ment of an optimized offline lookup table for rapid runtime
decision-making (outlined in Section V-C). An overview of all
components of our framework is illustrated in Figure 1.

A. Benchmarking for Model Fitting

Following the sensitivity analysis (Section IV-A), we fo-
cus on fine-grained exploration of system and algorithm
parameters while constraining the distribution type only to
random-uniform. This distribution, where data-block sizes are
uniformly sampled between minimum (typically zero) and
maximum values, represents the simplest and most widely
adopted pattern, yielding an average size equal to half the
maximum. This benchmarking strategy strikes an optimal
balance between computational cost reduction and compre-
hensive data collection, which is essential for accurate model
training. By restricting the distribution type while conducting
significantly more fine-grained sampling of other input pa-
rameters compared to the sensitivity analysis phase, we reduce
both computational resource requirements while still capturing
the essential performance trends required for robust machine
learning model development. Runtime measurements are col-
lected for each configuration and subsequently partitioned
using a classic 70/10/20 split into training, validation, and
testing datasets to evaluate model generalization performance
and prevent overfitting.

B. Machine Learning Model Training

In this work, we evaluated multiple ML techniques for per-
formance prediction. The candidate models included linear re-
gression, Lasso regression, Ridge regression, regression trees,
and random forest [24]. For each algorithm, we conducted
systematic hyperparameter optimization using cross-validation
on the training dataset [24]. Optimal hyperparameters (such as
tree depth for regression trees, regularization parameters for
Lasso and Ridge, and ensemble size for random forests) were
selected based on the performance of the validation set. The
final model’s performance was assessed using absolute per-
centage error metrics computed on the held-out test dataset to
ensure an unbiased evaluation of its generalization capabilities.

We selected these models due to their effectiveness in
handling limited feature dimensionality and computational
constraints. They exhibit robust generalization capabilities
with reduced susceptibility to overfitting, which is particularly
advantageous given the relatively compact feature space in-
herent to our performance prediction task. The computational
efficiency of these algorithms enables rapid convergence dur-
ing training, making them well-suited for our use case.

Auto-tuned All-to-all function

Lookup Table
Creation

PpR: woee ‘ Subset lookup table

P:1-16

...... 11 256-384 o Compute (1p

based
onT, P !
and PPN Retrieve
configuration
A,rand b

Scatter configuration
for all rank
Execute

corresponding
algorithm

Hiedta MPIAIl_to_ally

r:2
b: 32

Predict and select
optimal
configuration

Fig. 3. Runtime flow of lookup table query and algorithm dispatch in the
auto-tuned non-uniform all-to-all communication.

C. Lookup Table

To mitigate the computational overhead associated with ma-
chine learning model inference during runtime execution, we
employ a precomputed lookup table strategy that encapsulates
model predictions across a discretized parameter space of
input configurations. This lookup table functions as an effi-
cient decision support mechanism, facilitating rapid retrieval
of optimal non-uniform all-to-all implementations and their
corresponding parameters based on observed communication
patterns and system-specific characteristics. This lookup table
is subsequently integrated with real applications to enable
runtime algorithm selection.

Lookup Table Generation: The lookup table is created
using a hash table, where the keys correspond to the system
parameter (P, ppn,7) and average block size (i), and the
values correspond to the optimal algorithm implementation
along with its optimal configurations (A, r, b). Essentially, the
key corresponds to a four-dimensional grid spanning the key
input parameters:

Pe{pi,...,pm}, ppn€{p,...
ILLBE{ILL:l’""Ian}’ TG{Oal}a
Each cell in the grid, defined as

apk}a

[Pis Pit1) X [pes per1) X [ty pj1) X {7},

is associated with a reference point at (p;, pe, pt;, 7). The
trained model is then employed to estimate the runtime (T) for
all candidate configurations corresponding to each reference
point: (p;, pe, A, 7, b, pj, 7). For each grid cell, we select
the configuration (A,r,b) with the lowest predicted runtime
and record it in the corresponding entry of the lookup table.
The resulting table contains (m — 1) x (k—1) x (n—1) x 2
entries, each storing the optimal configuration (A, r,b) for the
associated range of (P, ppn, up, 7).

The use of a lookup table not only avoids expensive
runtime model evaluations but can also be easily regenerated
or adapted for new platforms. This approach bridges the gap
between ML-based performance modeling and practical inte-
gration within HPC systems, offering a scalable and efficient
solution for real-time algorithm selection.



TABLE II
SUMMARY OF INPUT AND OUTPUT PARAMETERS FOR DISTRIBUTIONS

Parameters Min Max Mean Median SD
A _ _ _ — _
P 32.0 768.0 320.9 256.0 248.1
r 2.0 768.0 66.8 16.0 116.3
T 0.0 2.1 0.1 0.0 0.2
B 24.5 37752.7 6609.7 2499.9 10186.9
aQB 89.1 213739000.0 14757310.0 | 2455551.0 | 45197860.0
Brax 51.0 50000.0 11849.1 4954.0 17086.7
Q1(B) 18.0 34581.0 5118.8 1599.8 8491.0
Q3(B) 31.0 41322.0 8101.1 2970.8 12229.5
B -0.3 0.2 0.0 0.0 0.1
KB -1.3 0.4 -0.4 -0.2 0.5

D. Runtime Integration

At runtime, the application dynamically extracts relevant
features from the current execution context and queries the
lookup table for a matching entry. Upon successful matching,
the associated algorithm and parameters are selected, ensuring
fast, informed decision-making with minimal overhead. For
unseen configurations, there are two user-configurable resolu-
tion strategies. The first employs nearest-neighbor heuristics
to identify the most similar configuration within the existing
lookup table based on feature proximity metrics. The second
strategy implements a fallback mechanism that invokes the
original ML model for real-time prediction when necessary.

The detailed steps involved in executing the lookup table to
enable autotuning are as follows (also illustrated in Figure 3):
First, each rank independently computes the local average
data-block size (up). These local pp values, together with
the known P, ppn, and topology flag 7, are then transmitted
to a designated master process, which subsequently calculates
the global p . Using the parameter tuple (P, ppn, up, ), the
master process identifies the corresponding entry in the pre-
computed lookup table and retrieves the associated algorithm
and tuning parameters (A,r,b). These parameters are then
broadcast from the master process to all processes. Finally, the
selected all-to-allv algorithm A is executed across all processes
using the retrieved parameters  and b.

Overall, the process of using the lookup table in an ap-
plication incurs minimal overhead, as it involves only a
lightweight reduce and scatter operation, a small number of
integer comparisons, and a single table lookup.

Integration into MPI libraries. At present, our autotun-
ing framework is implemented as a C++ wrapper around
MPI_Alltoallv, allowing it to intercept calls, analyze
data distributions, and select the best algorithm and pa-
rameters with minimal overhead. While this standalone de-
sign simplifies prototyping, our long-term goal is to inte-
grate it into production MPI libraries such as MPICH and
Open MPI. Integration would involve adding our implemen-
tations to the coll/alltoallv module, registering them
in coll_algorithms.txt, exposing tunable parameters
as MPIL_T control variables (CVARs), and extending the col-
lective selection (CSEL) engine to use our ML-based lookup
table. This would enable applications to benefit from optimized
non-uniform Alltoallv automatically, without code changes.
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Fig. 4. Histograms of non-uniform all-to-all runtimes on the original scale
(left) and the log-transformed scale (right).

VI. EVALUATION

We evaluate our framework on two systems: Polaris at
Argonne Leadership Computing Facility (ALCF) and Fugaku
at RIKEN R-CCS. Polaris consists of 560 compute nodes,
each equipped with dual-socket 32-core AMD CPUs and 4
NVIDIA A100 GPUs, connected by a Slingshot Dragonfly
network. The software environment is configured with Cray
MPICH version 8.1.16. Fugaku comprises 158,976 nodes, each
with 48 user-accessible A64FX cores and a 6D-torus Tofu-
D interconnect. Its software environment is based on Fujitsu
MPI 4.12.0, derived from OpenMPL.

We conducted two benchmarking phases to collect training
data for our machine learning models. The first phase gather
data for sensitivity to identify key parameters, and the second
phase collected data for model training. Together, the experi-
ments used about 1,370 node hours. In each experiment, we
changed one input parameter at a time (see Section IV), such
as varying the process count P or the number of processes
per node (PPN). Each configuration was run five times, and
we used the median runtime to reduce noise. The evaluated
algorithms include ParAta, HieAta (see Section II-C), and the
vendor-optimized MPI_Alltoallv.

A. Performance of Sensitivity Analysis

The sensitivity analysis was designed to identify the most
impactful statistical features affecting prediction accuracy. To
optimize time and computational resource utilization, we em-
ployed coarse sampling of non-statistical parameters (detailed
in Section IV-A).

Benchmarking: In this phase, we systematically varied
the process count P from 32 to 4,096, doubling the values
between successive experimental configurations. The number
of processes per node (PPN) was varied from 4 to 32. For
the radix parameter, we evaluated three specific values: 2,
VP, and P, which have been proven to demonstrate optimal
efficiency for short (<512 bytes), medium (<4,096 bytes), and
long messages, respectively [2]. Additionally, the batch_size
was fixed to the number of cores per node (32) on Polaris, as
this parameter has minimal impact on the sensitivity analysis.

For each experimental run, we generated per-rank block
sizes according to multiple distributions, including random-
uniform, normal, Poisson, exponential, and Laplacian distri-
butions. To improve the generalizability of our analysis, we
also incorporated randomly generated undefined distributions.
All distributions were constrained to generate random values
within the range of 1 and the maximum size of data-blocks



TABLE III
ANOVA ANALYSIS FOR STATISTICAL PARAMETERS (DF: DEGREES OF

FREEDOM).

Parameters | Df | Sum of Squares | Mean Squares F value p-value
A 3 5404 2702 1.371e+04 | <2e-16

P 1 51666 51666 2.622e+05 | <2e-16

i 1 1284 1284 6517 <2e-16
B 1 265153 265153 1.346e+06 | <2e-16
op 1 334 334 1697 <2e-16
Brax 1 99 99 504.4 <2e-16
Q1(B) 1 150 150 763.0 <2e-16
Qs(B) 1 22 22 110.8 <2e-16
B 1 9 9 45.60 1.46e-11
KB 1 10 10 52.86 3.63e-13

(M). M was varied from 8 bytes to 8,192 bytes. Addition-
ally, since each distribution has its own characteristics, we
employed three to four distinct configurations per distribution.
Representative examples of these distributions are illustrated in
Figure 2. For each distribution, we computed the correspond-
ing statistical parameters as defined in Table I and measured
the runtime performance across different configurations to
conduct the sensitivity analysis.

Data processing: The initial dataset collected from bench-
marking exhibited significant skewness, necessitating data
preprocessing before conducting sensitivity analysis. First, we
computed values for predefined input and output (runtime 1)
parameters (see Table I). These metrics were then compiled
into an aggregated summary, as presented in Table II.

Subsequently, we generated histograms of these parameters
to visually examine their distributions. These plots clearly
demonstrated substantial skewness, as illustrated in Figure 4,
which poses challenges for both sensitivity analysis and ac-
curate model training. Ideally, each parameter should exhibit
a uniform or normal (bell-shaped) distribution to facilitate
reliable sensitivity analysis conclusions and enable the devel-
opment of accurate machine learning models for performance
prediction. To address this issue, we employed a logarithmic
transformation for strictly positive parameters to stabilize and
normalize their distributions. As demonstrated in Figure 4,
the transformed parameters were re-plotted to confirm that
their distributions became more balanced and suitable for
subsequent analysis.

Experimental results: Figure 5 presents the correlation
heatmap between candidate input parameters and the output
parameter (runtime 7). The analysis reveals that several sta-
tistical parameters, including g, Bmax, @1(B) and Q3(B),
exhibit strong and approximately equivalent correlations with
T (runtime). In contrast, higher-order moments, 0123, vB, and
kB, demonstrate weaker correlations with execution time. To
avoid unnecessary computational overhead, we retained only
the four most predictive metrics for further analysis. However,
incorporating four statistics would still significantly increase
the dimensionality of the lookup table. We then conducted an
analysis of variance (ANOVA) [25], a statistical method used
to determine whether one or more input parameters have a
statistically significant effect on the output parameter (D).

Table III presents the ANOVA results for each statistical
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Fig. 5. Correlation matrix heatmap of candidate statistical parameters versus
measured runtime (7°). Darker red indicates a higher correlation.

parameter, where several components are used to evaluate
the importance of a parameter. We used the Sum of Squares
metric to quantify the proportion of variance in the output
parameter explained by each statistic. The table shows that
the up parameter has the highest Sum of Squares (265,153),
significantly exceeding the others. This result suggests that
the pp is the most influential statistic and a strong candidate
for retention in the predictive model. Therefore, we use only
pp in our ML model and lookup table. This simplifies the
model, reduces overfitting, speeds up table generation, and
lowers runtime overhead.

B. Performance of ML Training

Following the sensitivity analysis, we selected the aver-
age size of data-blocks (up) as the sole statistical param-
eter. Consequently, the input vector x is refined as: x =
(P, PPN, 7, A, 1, b, jup)

Benchmarking: For machine learning model training, we
employed significantly finer sampling compared to the sensi-
tivity analysis to acquire sufficient training data. Additionally,
rather than utilizing multiple distributions, we adopted the
most widely used distribution, random-uniform, which ensures
that sample data are uniformly distributed between 0 and
the maximum data-block size. In this benchmarking phase,
we varied the process count P from 32 to 4,096. For the
maximum data-block size, we extended the range from 16
bytes to 524,288 bytes. The batch_size (b) was varied from
1 to 32, and the radix (r) was varied from 2 to P. The
values of all these parameters were doubled at each increment.
Additionally, the value of radix was sampled more finely
between three critical points: 2, VP, and P. Following data
collection, we partitioned the dataset into 70% for training,
10% for validation, and 20% for testing. This training data
collected is also processed using the same transformation
strategy presented in the previous sensitivity analysis section.

For every process count and message size configuration
we plot the best performing algorithm and its correspond-
ing parameter. As shown in Figure 6, each tile represents
a (P, max-msg) configuration, labeled by the fastest algo-
rithm and parameters (M = vendor MPI_Alltoallv, P-r =
ParAta, H-r-b = HieAta). The figure shows that the optimal
configuration varies across process counts and message sizes,
and the patterns differ between Polaris and Fugaku due to



TABLE IV
COMPARISON OF ABSOLUTE % ERROR ON TEST SET FOR ML MODELS.

Linear | Lasso | Ridge | Decision Tree | Random Forest | MLP
48.52 | 4838 | 48.48 2.22 1.91 6.11
TABLE V

ESTIMATED COST BREAKDOWN OF FRAMEWORK CONSTRUCTION AND
RUNTIME OVERHEAD. TRAINING COSTS ARE ONE-TIME, WHILE RUNTIME
LOOKUP REPEATS PER INVOCATION.

Component Cost / Overhead

Benchmarking for sensitivity analysis (Polaris ~163 node hours

only)

Benchmarking for ML training (each platform) ~445.8 node hours

Model training ~0.5 hours (single node)

Lookup table generation ~0.75 hours (single node)

Runtime lookup (C++ wrapper) < 1% overhead per call

their different network topologies. These benchmarking results
further indicate the complex relationship between performance
and the input parameter space, further amplifying the need of
a data-driven model, to model this complex space.
Experimental results: Our training models included lin-
ear regression, Lasso regression, Ridge regression, regression
trees, and random forest. After training these models, we
evaluated their performance using absolute percentage errors
on the test set, as presented in Table IV. The results demon-
strate that linear, Lasso, and Ridge regressions produced high
prediction errors (exceeding 48%), whereas regression tree
and random forest models achieved significantly lower errors
(below 2.5%). Notably, the regression tree model exhibited
the low prediction error (2.22%) while maintaining the highest
computational efficiency among all evaluated models.
Framework Cost Breakdown: Constructing our autotuning
framework required a one-time offline cost. Benchmarking for
sensitivity analysis was performed on Polaris, while large-
scale benchmarking for ML training was conducted on both
Polaris and Fugaku, followed by model fitting and lookup
table generation. As summarized in Table V, most of the
time was spent on benchmarking, with model training and
table generation occupying only a small fraction. At runtime,
the MPI C++ wrapper adds negligible overhead, limited to
computing global statistics and a single table lookup.

VII. APPLICATION

In this section, we evaluate the performance of our lookup
table using a real-world application: transitive closure compu-
tation, a foundational graph mining problem [26].

Application-graph mining: Transitive closure (TC) is a
widely used graph mining problem that can be computed
using a classic fixed-point approach, which repeatedly applies
a relational algebra (RA) kernel to a graph G. This operation
incrementally discovers paths of increasing length within the
graph and continues until no new paths are found, thereby
reaching a fixed point. We employ an MPI-based open-source
library for parallel relational algebra [26], which utilizes
MPI_Alltoallv in each iteration of the fixed-point loop
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Fig. 6. Optimal algorithm configuration for non-uniform MPI_Alltoallv.
Each tile references a system configuration of a different number of processes,
maximum message size, and network topology. The optimal algorithm con-
figuration varies with P and message size, and the patterns differ between
Polaris (dragonfly) and Fugaku (6D torus).

to perform data shuffling. The alternative non-uniform all-
to-all algorithms included in this work preserve the same
function signature as MPI_Alltoallv, allowing them to be
seamlessly substituted. For our experiments, we use a graph
with 1,014,951 edges, obtained from the SuiteSparse Matrix
Collection [27]. This graph undergoes over 5,800 iterations of
all-to-allv communication before reaching the fixed point.

Lookup table validation: We evaluate the performance of
our autotuning framework using both Polaris (Dragonfly) and
Fugaku (6D torus) supercomputers, evaluating process counts
of 200, 256, 400, 512, 600, and 1024, including non-power-of-
two cases. The experimental results in Table VI show that our
autotuning framework consistently outperforms the standard
MPI_Alltoallv implementation across all configurations.
On Polaris, the communication time is reduced by 2.4x—6.0x,
leading to 1%-12.8% shorter total runtimes. This proves the
effectiveness of our auto-tuning framework on speeding up the
MPI application.

In addition to the direct performance comparison, we also
examined how our autotuner selects algorithms and parameters
over the execution of the application (512 processes on Po-
laris). Figure 7 plots the chosen algorithm against the average
block size at each iteration. When the block size is relatively
large, the tuner prefers the standard MPI_Alltoallv. In
contrast, during iterations with smaller blocks, particularly
at the start and in the latter half, it switches to our HieAta
and ParAta implementations (as shown in rows 1-2 of 7).
Moreover, the autotuner adapts each algorithm’s parameters
on the fly. For HieAta, a radix of 2 is selected under small
block sizes, effectively mimicking a Bruck-style algorithm that
excels in small block sizes. As block sizes grow (and HieAta
remains the best choice), the radix increases accordingly,
and the batch_size is also adaptively selected to cooperate
with the selected radix (as shown in rows 3—4 of 7). This
visualization shows that our autotuner, powered by a compact,
data-driven lookup table, can automatically pick both the



TABLE VI
PERFORMANCE COMPARISON OF OUR AUTOTUNING FRAMEWORK
AGAINST THE STANDARD MPI_ALLTOALLV IMPLEMENTATION ON THE
TRANSITIVE-CLOSURE APPLICATION. SPEEDUP = OFFICIAL/ OURS.

Polaris (Dragonfly network)

P Implementation Comm. Time (s) Total Time (s)
200 Official MPI_Alltoallv 8.69 353.92
200 Auto-tuned (Ours) 3.57 349.24
200 Speedup (Off/Ours) 2.43x 1.01x
256 Official MPI_Alltoallv 11.68 297.64
256 Auto-tuned (Ours) 3.93 289.94
256 Speedup (Off/Ours) 2.97x 1.03x
400 Official MPI_Alltoallv 13.14 195.25
400 Auto-tuned (Ours) 3.39 185.15
400 Speedup (Off/Ours) 3.88% 1.05 %
512 Official MPI_Alltoallv 14.02 149.47
512 Auto-tuned (Ours) 3.60 139.28
512 Speedup (Off/Ours) 3.89x 1.07x
600 Official MPI_Alltoallv 11.20 131.74
600 Auto-tuned (Ours) 1.89 123.25
600 Speedup (Off/Ours) 5.93% 1.07x
1024 | Official MPI_Alltoallv 11.52 79.50
1024 | Auto-tuned (Ours) 1.91 69.49
1024 | Speedup (Off/Ours) 6.03x 1.14 %

optimal algorithm and its parameters at runtime, minimizing
all-to-allv communication time without intervention.

VIII. RELATED WORK

Due to the complexity of hardware, communication topolo-
gies, and workloads, static tuning methods for collective op-
erations often perform suboptimally. Recent research increas-
ingly incorporates ML techniques to automate and optimize
collective algorithms for diverse communication scenarios.

Pellegrini et al. [10] present an early ML approach for
this domain, training regression models on benchmark perfor-
mance metrics to predict optimal parameters from execution
characteristics (message sizes, process counts). While demon-
strating significant improvements over default configurations,
their offline training methodology limits scalability to complex
applications and dynamic runtime environments. Hunold and
Carpen-Amarie [11] introduced a decision tree-based frame-
work for collective algorithm selection, demonstrating through
benchmarking analysis that ML-based selection outperforms
traditional heuristics. Zheng et al. [17] similarly applied ML
to model and optimize MPI collectives, achieving substantial
performance gains on modern HPC systems. Wilkins et al.
developed FACT [14], which enhances generalization across
diverse communication scenarios, and ACCLAiIM [13], which
integrates auto-tuning into production workflows via hybrid
offline/online ML strategies. Han et al. [16] introduced PML-
MPI, a pre-trained ML framework for runtime collective selec-
tion achieving robust generalization with minimal tuning over-
head. OMPICollTune [15] addresses the limitations inherent to
static and offline modeling approaches by using incremental
online learning. Their system continuously refines its pre-
dictive model during program execution, enabling adaptation
to application phase transitions and evolving communication
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patterns. Hunold et al. [12] predicts MPI collective perfor-
mance using regression models (XGBoost, GAM) trained on
benchmark data with algorithmic and runtime parameters,
enabling runtime retrieval of optimal configurations directly
from the fitted model. Unlike [12] and OMPICollTune [15],
our approach focuses on all-to-allv and leverages statistical
features of message-size distributions, combining offline ML
modeling with lightweight runtime lookup for adaptive, low-
overhead tuning.

Although not explicitly ML-based, Nuriyev and Lastovet-
sky [7] offer a valuable comparison by using analytical per-
formance modeling for dynamic selection of optimal MPI
algorithms at runtime. While less flexible than ML in modeling
non-linear interactions, analytical methods provide transpar-
ent, interpretable decision frameworks with potentially lower
computational overhead.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a data-driven autotuning frame-
work for non-uniform MPI_Alltoallv that automatically
selects among different implementations at runtime. By com-
bining sensitivity analysis with machine learning, we built a
compact lookup table that maps simple statistics of the block-
size distribution and process count to the best algorithm con-
figuration. Our C++ auto-tuned function achieves a speedup of
up to 6.03x in communication time and reduces total runtime
by 12.6% on a 1024-rank graph mining problem.



One key limitation of our approach is the extensive offline
benchmarking required to train the performance models. While
this one-time cost does not affect runtime overhead, it may
limit broader applicability. Another limitation of our work is
that changes in compiler toolchains and MPI runtimes between
the benchmarking and application environments could lead to
sub-optimal selection of All-to-allv algorithm configuration for
the MPI application. Future work will explore data-efficient
techniques, such as active learning, transfer learning, and
online tuning, to enable adaptation to new workloads and
architectures with significantly less prior measurement.

While our study focused on non-uniform
MPI_Alltoallv, the framework can be extended to
other collectives and applications as well. Future work will
assess whether this sensitivity analysis and machine learning
approach can be generalized to other collective operations and
irregular communication patterns. We also plan to integrate
analytical and roofline models to evaluate how closely our
auto-tuned configurations approach theoretical performance
limits.
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